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Abstract

The literature studying the macroeconomics of weather has focused on temperature and

precipitation annual averages, while micro studies have focused more on extreme weather

measures. We construct hundreds of variables from high frequency, high spatial resolution

weather measurements. Using the LASSO, we identify the parsimonious subset of variables

that can best explain GDP and key macro-fiscal variables. We find that an increase in

the occurrence of high temperatures and severe droughts, and scarcer mild temperatures

reduce GDP. These variables substantially improve the share of GDP variations explained

by weather. Additional evidence suggests that fiscal policy mitigates these shocks.
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1. Introduction

Climate is changing and will continue to change in the forthcoming decades even if sharp reductions in

greenhouse gas emissions will succeed in stabilizing temperature in the second half of the century (IPCC,

2021b). In this context, economists and policy-makers are striving to better understand all the effects of

climate on the economy.

Studies of the macroeconomic impacts of weather and climate can be divided in two groups.1 One strand

of the literature estimates the effect of climate on the macro economy by aggregating impacts from sec-

toral studies using a reduced-form damage function that links global mean temperature to total output

losses (e.g. Hope et al., 1993; Nordhaus and Yang, 1996; Tol, 1997; Christensen et al., 2012). Another

strand of the literature uses econometric analysis to directly estimate the impact of random changes in

temperature, and sometimes precipitation, on GDP per capita or Total Factor Productivity (Dell et al.,

2012; Deryugina and Hsiang, 2014; Burke et al., 2015; Abatzoglou et al., 2018; Letta and Tol, 2019;

Kalkuhl and Wenz, 2020; Tol, 2021; Newell et al., 2021; Kahn et al., 2021). Both strands of the litera-

ture have mostly focused on the effect of annual average weather on GDP and this contrasts with the

widespread concerns and evidence from sectoral studies that extreme weather may cause the largest losses.

We fill this gap and contribute to the econometric analysis of the effect of climate on the macro economy

along three dimensions. First, we leverage a global dataset of daily measurements of temperature and

precipitation with high spatial resolution to construct a large array of weather variables which can cap-

ture all sorts of potentially relevant extreme events. However, the large number of potentially relevant

weather variables creates a challenge for standard estimation techniques. Therefore, our second contri-

bution is the use of the Least Absolute Shrinkage and Selection Operator (LASSO) to select the weather

variables that contribute the most to explaining macroeconomic outcomes. Third, we look beyond the

effect of weather on GDP and examine important fiscal aggregates. This extension relative to prior work

is motivated by the fact that fiscal policy, if counter-cyclical, potentially absorbs and masks some of the

macro effects of weather shocks.

In short, we find that focusing on GDP and weather averages misses most of the macroeconomic impacts

of weather shocks. The introduction of a small number of well-selected alternative weather variables goes

a long way in improving our understanding of macro-fiscal variations.

Our study starts with the construction of a rich database of weather variables that can be used to conduct

macro-fiscal analysis. We rely on dozens of billions of daily temperature and precipitation measurements

on a global grid with a 30-Km resolution from the ERA5 dataset produced by the Copernicus Climate

1Climate is the long-run distribution of weather over several decades (Auffhammer et al., 2013). Weather varies
continuously, but it is bounded by its long-term distribution. This distribution can be characterized using averages,
but also higher-order moments. We use “weather shocks” or “climate shocks” to indicate short-term changes in a
weather variable. Climate change is instead the long-run, slow-moving change in the distribution of weather over
several decades.
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Change Service (C3S) at the European Centre for Medium-Range Weather Forecasts (ECMWF). There

is an intractable number of ways to combine these daily geospatial measurements into country annual

variables to match the annual frequency and country-level coverage of GDP per capita. Therefore, we

rely on the climate literature to guide the construction of potentially relevant weather variables. We

obtain 160 variables that include, for example, the center and tails of the distribution of temperature and

precipitation, heat and cold waves, droughts, and intense precipitation. Once merged with macro-fiscal

outcomes and after accounting for the introduction of lags, our dataset covers about 500 variables and

203 countries annually over the 1979-2019 period.

Our weather dataset exploits the richness of daily geospatial measurements to capture local and infra-

annual shocks. These variables can reflect weather events that are likely missed when averaging over

space and time. For example, total annual precipitation fails to capture a local drought if it concurs with

high precipitation later in the year or in other parts of the country. These variables also allow us to differ-

entiate between the effects of duration and intensity. For example, the effect of extreme heat (short-lived

extreme temperature) can differ from the effect of heat waves (prolonged periods with unusually high

temperature). We can also measure shocks that are only relevant because they are deviations from local

and seasonal norms (temperatures that can be normal in a country like India could be devastating in a

country with a different climate like Mongolia). For each variable, we consider aggregation over space

using area weights and population weights.

We rely on a flexible empirical specification to relate weather shocks to macro-fiscal outcomes. In our

baseline specification, we regress the first difference of the macroeconomic variable of interest on the

first difference of our selected weather variables. Country fixed effects remove time-invariant country

characteristics that affect growth, including the linear trends in some climate variables that we observe

in the estimation sample. Year fixed effects remove global shocks. We also add lags of all variables to

allow for rich dynamic effects and control for auto-correlation. Hence, the effect of weather shocks is es-

timated using random interannual variation of countries’ de-trended weather after removing global shocks.

With approximately 500 independent variables, standard macroeconomic regressions would quickly run

into over-fitting and near multi-collinearity issues. To select the variables that can best explain macroeco-

nomic outcomes, we use an algorithm based on the LASSO (Tibshirani, 1996). This algorithm maintains

a balance between underfitting and overfitting by imposing a penalty on the inclusion of non-zero coef-

ficients in the regression. Non-zero coefficients are those for which the reduction in mean squared error

must outweigh the penalty incurred by their inclusion in the regression, ensuring that only the most

influential variables are retained. In the LASSO, the number of retained variables depends on a hyperpa-

rameter whose value can be set to maximize the fit of the model. Because our main concern is the sparsity

and interpretability of results, we focus on the fit as measured by the Bayesian Information Criterion but

we also discuss the alternative results obtained with different fit criteria.

We find that a handful of weather variables have a significant impact on GDP per capita. Some of these
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variables capture harsh droughts and high temperatures. We estimate that an increase in the occurrence

of such weather shocks has a detrimental effect on GDP. Conversely, we find that an increase in mild

temperatures has beneficial effects. We find that a one standard deviation in the selected variables leads

to impacts of around 0.2 percentage points of GDP.

Our results demonstrate that the effects of specific temperature shocks identified in many micro or sectoral

studies have sizeable macro-level effects. The beneficial effect of moderate temperatures and the harmful

effect of high temperature on agricultural output (Schlenker and Roberts, 2009; Blanc and Schlenker,

2017), mortality (Deschênes and Greenstone, 2011), energy consumption (Deschênes and Greenstone,

2011), time allocated to labor (Graff Zivin and Neidell, 2014), and labor productivity (Somanathan

et al., 2021) have been widely documented. The impact of droughts is similar to what other studies

found (Cantelmo et al., 2023; IMF, 2020).

We empirically test the persistence of weather impacts using impulse response functions estimated with

the local projection method proposed in Jorda (2005). We find evidence that each instance of a weather

shock has a persistent and stable impact on GDP levels over a 7-year horizon.2

Our empirical setup is not ideal to quantify the effect of climate change on long-run growth rates. We

remove the average levels and linear trends of weather variables by using first differences and country

fixed effects. This strengthens our strategy to identify the effect of weather shocks which are arguably

unpredictable in this setup. However, it removes changes to the long-run distribution of weather (both

changes in average conditions and in the frequency of tail events) which would capture climate change

and its effects. Our setup is also not ideal to quantify the extent of future adaptation capable of reducing

climate change impacts.

We confirm the robustness of our results with a battery of alternative specifications and heterogeneity

analysis. The selection of relevant climate variables is similar when we use the Elastic Net (an alterna-

tive machine-learning operator addressing some of the LASSO’s limitations) and different sets of fixed

effects. The estimated magnitude of the selected weather shocks is robust to the introduction of a range

of controls capturing the presence of violent conflicts, inflation dynamics, and external shocks, and to

alternative estimators that can correct biases arising from time dependence in panel data.

Heterogeneity analysis confirms our main results and highlights meaningful differences across country

groups. Overall, we find that the effect of weather shocks is larger in countries that are more oriented

2Like for any differences-in-differences analysis and without further work, our approach cannot inform about
average effects. We define weather shocks as random inter-annual variations from mean levels. Therefore, “good”
and “bad” shocks are symmetric by construction in all countries. Their average value is equal to zero over our
estimation period and our specification implies that their average impact on average growth (and GDP level) is
also equal to zero. Our results do not imply that GDP is unaffected by climate change. On the contrary, trends
observed in some of our climate variables may have already negatively affected average GDP growth and would be
expected to remain detrimental in the future.
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towards agriculture, in countries that are poorer, in the first half of the panel than in the second half,

and in countries with less democratic institutions.

One of our key results is that our selected climate variables perform much better in explaining GDP

variations than temperature and precipitation averages used in the literature. We confirm this result for

a wide range of metrics by establishing comparisons with two central papers in the literature, Burke et al.

(2015) and Kahn et al. (2021). For example, we measure how the within R-squared calculated on out-

of-sample data improves after we introduce climate variables in a specification without climate variables.

We find that adding our selected climate variables in the GDP regressions they consider can double or

triple the percentage increase in the out-of-sample within R-squared. This result emphasizes that changes

in weather extremes are more important than changes in average conditions to explain GDP variations

and that the overall macroeconomic importance of climate may be larger than previously thought.

Nevertheless, we find that the total amount of variation in GDP per capita attributable to weather is

small. Our selection of climate variables can at most increase the within R-squared by a few percents.

This is an indication that weather is not the main driver of GDP variations globally on average.

We additionally conduct a systematic analysis of the composition and the mitigating and amplifying

effects of fiscal responses by examining government revenue, expenditure and debt, together with GDP.

To keep our analysis compact, we use the LASSO to select the most relevant climate variable for each of

these three fiscal outcomes. The procedure selects three new variables: the length of the longest day cold

wave, mean precipitation in wet days, and mean precipitation in the driest months.

We find that the response of fiscal variables to weather shocks tends to mitigate the effects of a weather

shock by implying larger fiscal deficits when the shock has negative consequences for GDP. Specifically,

the expenditure-to-GDP ratio increases with harsh droughts while the revenue ratio falls when tempera-

tures become less favorable. We also find that other weather shocks have significant and rich impacts on

fiscal aggregates but are hard to interpret. The rich patterns we uncover suggest that the characteristics

of the fiscal responses to weather shocks are complex but significant, and deserve more granular analyses.

The rest of the paper is organized as follows. The next section describes our empirical specification

and the algorithm to select relevant climate variables. The third section explains how we construct the

weather variables and summarizes the main characteristics of our dataset. The fourth and fifth sections

present results, first for GDP per capita, and then for fiscal variables. The last section concludes.
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2. Methods

2.1. Empirical model specification

Weather shocks can have potentially complex dynamic effects on GDP. We start by relating GDP per

capita in country i at time t (yi,t) to a vector of weather variables (Xi,t) with a very flexible specification:

ln yi,t “

K
ÿ

k“0

ak,it
k `

L
ÿ

l“1

θl ln yi,t´l `

P
ÿ

p“0

β1
pXi,t´p ` c1Zt ` εi,t (1)

where
řK

k“0 ak,it
k are country-specific polynomial trends in weather patterns or economic activity, Zt is

a vector of variables capturing global shocks, and εi,t is the error term. This specification encompasses

various models estimated in the literature (Hsiang, 2010; Dell et al., 2012; Deryugina and Hsiang, 2014;

Burke et al., 2015; Kalkuhl and Wenz, 2020; Kahn et al., 2021), potentially allowing weather variables to

have persistent dynamic effects on GDP.

To address serial-correlation and the fact that country GDP levels are non-stationary, we estimate equa-

tion (1) in first difference. It becomes a standard ARDL equation for GDP per capita growth:

∆ ln yi,t “

K´1
ÿ

k“0

αk,it
k `

L
ÿ

l“1

θl∆ ln yi,t´l `

P
ÿ

p“0

β1
p∆Xi,t´p ` c1∆Zt ` ϵi,t. (2)

This equation continues to have polynomial trends but of order K ´ 1 instead of K.3 We test alternative

restrictions on the order of the polynomial and on the vector ∆Z. Note that persistent effects of weather

shocks would be revealed by a long trail of significant β1
p.

We don’t allow for a relationship between GDP growth and levels of the weather variables because GDP

growth is stationary whereas many weather variables exhibit trends and are not stationary. Table B.1

in the online appendix presents evidence that average temperature and most variables built using tem-

perature data are trended in most countries, as noted in the context of this literature by Kahn et al.

(2021).4 This implies that GDP growth and these level variables cannot be related without additional

manipulation (Tol, 2019; Kahn et al., 2021).

In our specification, such trends imply that the average change in weather variables takes significant

and different values across countries. We systematically include country fixed effects to control for these

3The new coefficients of the polynomial trends are defined based on those in equation (1) by the equation
řK

k“0 ak,i
`

tk ´ pt ´ 1qk
˘

“
řK´1

k“0 αk,it
k, where the left-hand side is equal to

řK
k“0 ak,i

´

tk ´
řk

q“0

`

k
q

˘

tqp´1qk´q
¯

,

and also equal to
řK´1

q“0 tq
´

řK´q
r“1

`

r`q
r

˘

ar`q,ip´1qr`1
¯

after arranging terms. This means αk,i ”
řK´q

r“1

`

r`q
r

˘

ar`q,ip´1qr`1.
4For example, temperature trends range from 0.07 to 0.6 ˝C per decade across countries. The positive trend

in the prevalence of days with maximum temperature above 35 ˝C is about seven times larger than average in the
country with the fastest trend, and is negative in some countries.
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country-specific trends.5

Our specification is not totally immune to bias from changes in the slope of trends. To handle time-

varying trends, Kahn et al. (2021) subtract the 30-year moving average from each climate variable and

take first differences. While effective, this would be very costly for us because our weather data starts in

1979 unlike their data that starts in 1960. In practice, this does not seem to be a major problem because

many variables (Table B.1 in the online appendix) and especially those selected for our main specification

do not show unambiguous evidence of a significant break in the linear trend over the panel years.

2.2. Dynamic effects of weather shocks: the local projection method

The complex dynamic effect of weather on GDP might not be immediately revealed by the estimation

results from equation (2). There might be persistent weather effects because weather shocks themselves

are persistent, because of feedback effects if current GDP per capita depends on past GDP levels, or

because of a combination of both.

We use a local projection method following Jorda (2005) to estimate impulse response functions from

a shock to one or more of our independent weather variables. As shown in Jorda’s seminal paper,

this procedure is more robust to misspecification than auto-regressions, easily accommodates flexible

specifications, and allows for a simple visualization of the dynamic responses to weather shocks. We

estimate variants of equation (2) where the dependent variables are long-differences between GDP per

capita between time t ` h and time t ´ 1:

ln yi,t`h ´ ln yi,t´1 “

K´1
ÿ

k“0

αh
k,it

k `

L
ÿ

l“1

θhl ∆ ln yi,t´l `

P
ÿ

p“0

βh1
p ∆Xi,t´p ` γh1∆Zt ` ϵhi,t (3)

where h indexes the estimation horizon measured in years. Equation (2) corresponds to horizon 0 and

coefficient estimates β01 capture the contemporaneous effects of weather shocks. We consider dynamics

up to horizon 7 as in Acevedo et al. (2020). In case of a persistent effect on GDP growth rates, the

coefficient βh1
p would be expected to become increasingly large in absolute value as time goes by. If

instead the effect of the shock is mean-reverting, βh1
p would be expected to converge to 0 as time goes by.

Coefficients that remain largely unchanged over time are a sign that, after the initial shock, growth goes

back to normal but GDP levels remain persistently affected.

2.3. Selecting relevant weather variables and estimating their effects

Our most important contribution to the literature is to study the effect of a wide set of climate variables.

In total, we include 160 weather variables in X as described in Section 3. Most of these variables have

5To see this more clearly, consider a trended variable x evolving as xi,t “ θit` vi,t, where θi is a time-invariant
trend for country i, and vi,t is a random component with zero mean. The first difference is ∆xi,t “ θi ` ∆vi,t.
The panel average of first differences is Ě∆xi “ 1{pT ´ 1q

ř

t ∆xi,t “ θi ` 1{pT ´ 1q
ř

t ∆vi,t. The joint use of first
differences and fixed effects removes the trend from all weather variables, as ∆xi,t ´ Ě∆xi “ ∆vi,t ´ Ě∆vi.
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never been studied before. Counting lagged values, we examine approximately 500 variables.

If all the variables that we consider were entered simultaneously in equation (2), the model might still be

estimated thanks to our large panel, but estimation would easily run into over-fitting issues. To avoid this

problem, we use the Least Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996) in a

process where machine learning (ML) and expert judgement concur in selecting a parsimonious number of

relevant variables. As a robustness check, we consider another operator that addresses over-fitting issues,

the Elastic Net. It has the advantage of nesting the LASSO under some specific parameterization and

can potentially better handle environments where the variables to be selected are highly cross-correlated.

The LASSO selects coefficients to minimize the sum of squared errors in equation (2) plus a weighted

penalty term equal to the sum of the absolute value of each coefficient. The weight attributed to the

penalty term is a hyper-parameter λ that needs to be selected before minimizing the loss function.

Specifically, the LASSO solves the following problem:

min
θ,β

Lpθ,βq ` λp||θ||1 ` ||β||1q, (4)

where

Lpθ,βq “
ÿ

i,t

˜

∆ ln yi,t ´

K´1
ÿ

k“0

αk,it
k ´

L
ÿ

l“1

θl∆ ln yi,t´l ´

P
ÿ

p“0

β1
p∆Xi,t´p ´ γ 1∆Zi,t

¸2

λp||θ||1 ` ||β||1q “ λ

˜

ÿ

l

|θl| `
ÿ

j,p

|βj,p|

¸

, and where j indexes the variables in X

Intuitively, the LASSO chooses coefficient estimates by comparing benefits measured by a reduction in

the sum of squared errors in equation (2) with costs measured by the size of non-zero coefficients. When

a coefficient βj,p is shrunk to zero, the variable is effectively omitted from the regression. The penalty

term measures the costs associated with having a model with too many variables. The larger is λ, the

smaller are coefficient estimates and the smaller the number of variables selected.

Before implementing the LASSO operator, we follow Belloni et al. (2014) and we impose that the model

must use country fixed effects and, in some specifications, year fixed effects or country quadratic trends.

We do so in two stages, first by regressing all the dependent and independent variables on the selected

fixed effects and trends, and second by applying the LASSO to the estimated residuals from the first

stage (the “partialed-out” variables).

We choose the value of the hyperparameter λ that optimizes a fit criteria estimated using the variables

resulting from implementing the LASSO. There is no universal “optimal” way to choose the fit criteria

(and λ), and optimality conditions must be set by the analyst. In the ML literature, this is known as the

“no free lunch theorem”: there is no optimization algorithm that is capable of guiding the identification
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of a prior for the penalty weight when starting the analysis (Adebayo and Fokoue, 2019). Section B.6 in

the online appendix has more details about implementing the optimization process.

We consider a range of fit criteria. We follow the guidance in Zou et al. (2007, 10-11) and focus primar-

ily on results obtained with the Bayesian Information Criterion (BIC) because our main concern is the

interpretability, and therefore the sparsity, of the model to be selected. Additionally, we systematically

examine the within R-squared that we calculate on out-of-sample data and the Akaike information crite-

rion (AIC).

When using the out-of-sample within R-squared, we compute it in a way to address well-known limi-

tations. We use R-squared measures because they relate to the share of the variance of the dependent

variable that can be explained by independent variables and are therefore easy to interpret. However,

the R-squared gets mechanically larger as the number of independent variables increases. To address this

issue, we first focus on the within R-squared, which is the standard R-squared measure obtained after

removing the estimated fixed effects from all other variables.

Additionally, we compute the within R-squared on out-of-sample data. We randomly divide the dataset

into 5 equally-sized subsets, where the model is trained on the union of 4 sets (training set) and the re-

maining set serves as the evaluation set. We compute the within R-squared using the coefficient estimates

obtained on the training set and using the data from the evaluation set. This process is iterated 5 times

(each iteration corresponds to selecting one of the five sets as the evaluation set) and the final criterion

is computed as the average within R-squared across iterations. Furthermore, we consider two different

methods for splitting the data into different sets. In the first method, we ignore the panel structure of

the data and assign each observation to one of the 5 sets randomly. Because ignoring serial correlation

typically leads to a downward bias in the determination of the hyper-parameter (and the selection of too

many climate variables), we experiment by randomly assigning each country with all its observations to

one of the 5 sets. This way, we preserve the time dimension in each set. In a majority of cases, we confirm

that the second assignment method leads to smaller selections. However, the two methods produce sim-

ilar results and, in what follows, we choose to focus on the results from the second method for conciseness.

The LASSO produces “biased” (or “regularized”) coefficient estimates because the penalty term shrinks

them. To estimate the “unbiased” effect of weather shocks, we finally re-estimate the model with the

climate variables selected by the LASSO using standard OLS methods. For theoretical justification, see

Belloni and Chernozhukov (2013).

We additionally implement the Elastic-Net (EN) as a robustness check. The EN can outperform the

LASSO and encourages a grouping effect, where strongly correlated predictors tend to be in or out of

the model together. Compared with the LASSO, the EN’s objective is to minimize an equation with an

additional term penalizing non-zero coefficients:
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min
θ,β

Lpθ,βq ` ϕλp||θ||1 ` ||β||1q ` p1 ´ ϕqλp||θ||2 ` ||β||2q, (5)

where

p1 ´ ϕqλp||θ||2 ` ||β||2q “ p1 ´ ϕqλ

˜

ÿ

l

θ2l `
ÿ

j,p

β2
j,p

¸

and 0 ď ϕ ď 1

The new third and last term in equation (5) penalizes the sum of the squares of coefficients. Compared to

the other penalty term already also present in the LASSO, the sum of squared coefficients penalizes large

coefficients more and very small coefficients less. Therefore, the EN is less likely to shrink coefficients all

the way to zero and can retain correlated variables in the model. The parameter ϕ in equation (5) governs

the balance between the two penalty terms: as the value of ϕ increases, the variable selection performed

by both LASSO and EN becomes more similar. As with the LASSO implementation, we choose the

hyper-parameters ϕ and λ that maximize the same fit criteria.

3. Data

3.1. Weather data sources and aggregation over time and space

We start from hourly gridded reanalysis temperature and precipitation data from 1979 to 2019 from the

ERA5 dataset compiled by the European Centre for Medium-Range Weather Forecasts (Hersbach et al.,

2018).6 The grid resolution varies with latitude with cells of 30 ˆ 30 km at most at the equator (See

Section B.1 in the online appendix for more details.)

Weather data is available at a much higher spatial and temporal resolution than typical country macroe-

conomic data. Our goal is to reduce the millions of weather measurements in every country and year

to construct a manageable number of potentially meaningful climate variables. We aggregate raw ERA5

weather data over space and time to construct annual country-level variables using the cloud computing

power of Google Earth Engine (GEE) (Gorelick et al., 2017).7

We can use the high spatial and temporal granularity of temperature and precipitation data to reveal

weather events that would be lost when averaging weather variables over an entire country during a whole

year. Country and year averages may bias estimates of weather impacts in at least three important ways.

First, averages miss local and infra-year extreme weather events if events of opposite nature cancel out

each other. For example, droughts in a specific region in summer can coincide with intense precipitation

6Reanalysis data is generated using models that combine a variety of weather observations and past short-
term weather forecasts from different datasets (e.g., weather stations, satellites, ocean gauges, weather balloons) to
remove biases in measurement and to create a coherent, long-term record of past weather into one regularly spaced
grid. For more details, see https://www.ecmwf.int/en/about/media-centre/focus/2020/fact-sheet-reana

lysis and https://cds.climate.copernicus.eu/cdsapp#!/home.
7See https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_DAILY.
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in another part of the country or in a different season. Country annual averages would then be unable

to reflect these extreme events. Second, the relationship between a weather shock and the economy can

be non-linear and dependent on duration, spatial coverage, and intensity. For example, both prolonged

high temperatures (a heatwave) and short-lived but very high temperature could impact the economy in

different ways. Even if average temperature might approximately reflect the occurrence of various hot

weather events, it would fail to capture the different effects associated with the different characteristics of

these events. Third, with high-frequency data it is possible to calculate deviations from normal seasonal

weather that may not be reflected in averages or as outliers in the full annual distribution. For example,

unusually high precipitation in central Europe in summer could have an impact on the economy even if

the same level of precipitation would be totally normal and irrelevant in another time of the year or in

other regions that are more accustomed to heavy precipitation.

We build variables that describe the distribution of temperature and precipitation as well as notable ex-

treme events following the climate literature (Kim et al., 2020; Perkins and Alexander, 2013). When the

literature uses similar alternatives, we include all of them and let the LASSO or the EN select the most

relevant options. While we could have used ML techniques to reduce the full matrix of weather measure-

ments into country-year variables, we choose to start from definitions of weather events that are frequently

used in the climate literature to obtain results that are easier to interpret and can be linked to other work.

We construct both unweighted and population-weighted country-level variables.8 Both weighted and

unweighted variables have been used in the literature with convincing arguments, but it is ultimately

an empirical question which one explains better GDP. For this reason we include both sets of variables

in the LASSO exercise, an opportunity to illustrate how ML methods can be used to address practical

questions as the choice of weighting schemes.

3.2. Main variable definitions

Defining extreme weather. A practical problem for empirical research is the lack of unambiguous

definitions of extreme weather. For this reason we use many different ways to characterize the full dis-

tribution of temperature and precipitations. Table A.1 and the online appendix B.2 provide a complete

description of all variables, exact formulas, and summary statistics for the selected variables. In general,

a weather event is extreme if some of its characteristics exceed some thresholds. Specifically, definitions

are ambiguous about the thresholds to use with respect to major characteristics, like intensity, frequency,

or duration.

The literature has used both “relative” and “absolute” thresholds. In some cases, extreme weather is

defined as weather “that is rare at a particular place and/or time of year” (Cubasch et al., 2013, 134).

8We obtain grid cell level population data by using the Socioeconomic Data and Application Center’s UN
WPP-Adjusted Population count dataset. See https://doi.org/10.7927/H4F47M65 for a detailed description.
We use fixed population weights – population in year 2000 – to avoid introducing trends.
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This suggests the use of thresholds that are specific to locations and seasons (“relative thresholds”). For

example, definitions can rely on the 90th percentile of the local distribution of temperature at a certain

time of the year. Relative thresholds account for the importance of adaptation to average conditions and

emphasize the effects of deviations from local averages. In other cases, extreme weather is defined using

thresholds that are constant across space and time (“absolute thresholds”). For example, maximum daily

temperature greater than 40 ˝C are generally considered harmful everywhere. Absolute thresholds are

better suited to capture physical limits beyond which weather causes damages, no matter when or where

it occurs (e.g., IPCC, 2021a). We consider both “relative” and “absolute” weather extremes as they can

both be relevant for the economy in different ways.

We typically capture extreme events at the country-year level by both counting their occurrences and

measuring both their prevalence and intensity. To this end, we count the number of times in which a

weather event is observed in each grid-cell and each day of a year. We then divide by the total number

of grid-days to calculate an index from 0 to 1 that measures the prevalence of the event over the entire

country and the entire year. We also construct a wide range of variables that characterize the intensity

of extreme weather over time and space. We do so for temperature, precipitation and wetness/drought

as detailed below.

Temperature variables. We consider average temperature, the variance of daily temperature, and

the average diurnal temperature range (the difference between the minimum and maximum temperature

in a day). We calculate the number of cold nights, cold days, warm nights and warm days using relative

thresholds based on the 1979-2019 distributions for every 5-day window centered on each day of the year.

As “Heatwaves” and “coldwaves” are loosely defined as prolonged periods with unusually warm or cold

temperatures (e.g., Perkins, 2015), we consider several alternative measurements. We follow Perkins and

Alexander (2013) and consider various thresholds to define heat and cold waves in daytime and nighttime.

We then count the length of the longest wave, the number of waves in a year, the number of days and

the average maximum or minimum temperature during such waves. We also follow Kim et al. (2020)

and additionally define the duration of cold and warm spells as the number of days exceeding alternative

relative temperature thresholds for prolonged periods.

We use the fine spatial resolution of our data to define minimum and maximum variables that are used

in the literature to capture local extremes. We compute the annual minimum of night temperatures and

the maximum of daytime temperatures for every grid-cell in a country, and average them out over space.

We also define another set of extreme temperature variables using absolute temperature thresholds often

used in the climate literature (e.g., IPCC, 2021a). With absolute thresholds, using the highest possible

level of spatial resolution is essential to avoid missing the potentially meaningful events that would other-

wise be averaged out. For example, Figure 1 illustrates how country averages would miss many instances

of days with maximum temperature above 35 ˝C in only parts of a country. To avoid this, we calculate
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the prevalence of extreme temperature events using different thresholds (e.g., below 0 ˝C, above 35 ˝C

and 40 ˝C) using daily and grid-cell data.

Figure 1: Illustrating the role of high spatial resolution when using absolute thresholds

Notes: This figure illustrates the importance of high spatial resolution when accounting for daily maximum temper-
atures exceeding 35 ˝C (TX35). As seen in the top row, at the beginning of summer 2019, only a small share of
the US (8%) experienced temperatures higher than 35 ˝C. These temperatures would average out if we were to use
country means. Similarly for Brazil in December 2019, the bottom row shows that only 12% of the country crosses
the 35 ˝C threshold. In both cases, country averages would fail to capture these extreme temperatures.

Finally, to capture potential non-linear effects of temperature on macroeconomic variables, we define 3
˝C-wide intervals from -9 ˝C and below, to 30 ˝C and above and we count how often temperature falls

in these intervals over space and time (see for example Schlenker and Roberts, 2009). This approach

allows us to capture the impact of temperature on macro-fiscal variables at different temperature levels

imposing minimal restrictions on the temperature response functional form.

Precipitation variables. We use the term precipitation throughout this paper because our data mea-

sures both rain and snow precipitations (converted into rain equivalents). We sometimes focus on “wet

days”, that are days with 1 mm precipitation or more, or on “dry days” with precipitation below 1 mm.

Our variable set includes the country-year averages and the variance of daily precipitation, which we

construct twice, on all calendar days and on wet days. We also measure precipitation on very wet and

extremely wet days, where these days are defined using relative thresholds.

We build several variables to capture extended wet and dry periods. We count the largest number of

consecutive dry days, wet days, very wet days, and extremely wet days. We measure precipitation in the

longest period of wet, very wet and extremely wet days respectively.

Floods are among the most destructive climate disasters. To capture short but intense precipitation
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that may cause floods, we use the maximum amount in a year of rainfall in 1-day or 5-day intervals.

To capture extreme precipitation at the local level, we also examine total monthly precipitation in each

grid cell. We use these to calculate the country average of maximum and minimum monthly precipita-

tion. These intense precipitation indicators are good proxies for tropical cyclones because they capture

extreme rainfall often observed during these events. For example, plots of maximum 5-day rainfall over

the Caribbean and the Southern United States in 2004 reveal the track of category 5 Hurricane Ivan.

As for temperature, we make use of our data high spatial resolution to define precipitation extremes using

absolute thresholds. We calculate the number of consecutive days in which a minimum percentage of the

country area is experiencing a dry day using different percentage thresholds. Similarly to what we do

with temperature, we define four precipitation intervals (divided by 1, 10, and 20 mm thresholds), and

measure how often precipitation is in any of these intervals. We define the maximum extent of heavy and

very heavy precipitation as the maximum surface of a country where precipitation exceeds 10 mm and

20 mm respectively. We also construct an indicator that measures deviations from a balanced level of

precipitation. This indicator measures the absolute deviation from having precipitation between 1 and

10 mm half the time over space and time.

Wetness and drought variables. We use the Palmer Drought Severity Index (PDSI) (Palmer,

1965) to introduce a measure of dry and wet periods that combines temperature and precipitation data

to estimate cumulative deviations in soil moisture from normal conditions (Dai et al., 2004; Abatzoglou

et al., 2018; Lai et al., 2020).9 The PDSI ranges from -10 to +10, but values below -4 and above +4 are

very rare. To capture extreme conditions during a year we build variables measuring the share of total

grid-months subject to droughts and harsh droughts (with PDSI respectively below -3 and -4), and to

periods with high and very high moisture (with PDSI respectively above 3 and 4). As for precipitation,

we also seek to capture the maximum geographical extent of droughts and wet conditions. For each of the

four categories, we compute the share of affected grid-cells in the month where the share is at its maximum.

In sum, in our empirical analysis, we consider 45 different temperature variables, 29 precipitation vari-

ables, and 8 wetness-drought variables, for a total of 82 unique climate variables. We add the first and

second lag of these variables as well as their population-weighted counterparts. In total and after remov-

ing perfectly collinear variables, we use a set of 480 climate variables.

Macro-fiscal variables. We use GDP per capita from the World Bank’s World Development Indi-

cators (WDI, 2022).10 For fiscal outcomes, we collect variables from the IMF World Economic Outlook

(WEO, 2022) because it has a wider coverage than the WDI. We use government revenue and expendi-

9Data downloaded from Google Earth Engine. See http://www.climatologylab.org/terraclimate.html

and https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE for a
detailed description of the datasets.

10Specifically, we use the variable “GDP per Capita constant 2015 US$” (NY.GDP.PCAP.KD).
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ture expressed in percentage of GDP, also from the WEO database.11 To examine gross debt, we draw

from the Global Debt Database which improves on other databases by constructing long series with a

consistent coverage over time (Mbaye et al., 2018).12 For some countries (all countries in the case of

debt), the fiscal variables only cover the central government, implying that our analysis will miss local

governments’ response.

3.3. Summary statistics

We start our analysis by constructing estimation samples that are suited for our analysis. Mainly, we

want to avoid that the selection of variables is overly influenced by a few outlier values in the dependent

variable. Therefore, we exclude all the observations that have values more than 5 standard deviations

away from mean GDP per capita growth. This leads us to remove 0.4 percent of the total initial obser-

vations and to use a sample with 203 countries and 6,653 observations.

We use subsamples for robustness checks and further investigations. When we consider the balanced

sub-sample of countries with non-missing non-outlier observations from 1984 to 2019, we work with 129

countries and 4,644 observations. When we consider fiscal variables, we exclude observations with values

more than 5 standard deviations away from the mean for any of the seven variables of interest (govern-

ment revenue, expenditure, and debt, both in log and as ratios to GDP, and GDP per capita growth).

As a result, we exclude 80 observations (2 percent of the sample with non-missing fiscal values) and use

a sub-sample with 165 countries and 3,890 observations.

Our empirical and identification approach relies on inter-annual variation within country. Therefore, we

use a standard approach to decompose the variance of variables into between and within components (see

online appendix Section B.3). The between standard deviation measures variation of average country

weather around the global mean. The within standard deviation measures the average deviation from

country averages.

GDP per capita grew by 1.7 percent per year on average in our largest sample used for GDP analysis

and by 2.0 percent per year on average in the smaller sample used for fiscal policy analysis (Table B.2

in the online appendix). The within standard deviation of GDP per capita growth is large, ranging from

4.6 (larger sample) to 3.9 (smaller sample) percentage points. The ratios of government revenue and

expenditure to GDP grew at the average rate of 0.06 and 0.05 percentage points per year, respectively.

The inter-annual variation of these variables is substantial, with within standard deviations ranging from

2.9 to 3.6 percentage points. Government debt-to-GDP ratios were stable on average but with a large

within standard deviation of 8.1 percentage points.

11Specifically, we use the variables GGR NGDP and GGX NGDP for the general government.
12We use “Central government debt, % of GDP” rather than “General government debt, % of GDP” because

of wider coverage.
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Many weather variables exhibit a trend over the sample period. Table B.1 in the online appendix reports

results from a systematic analysis of trends in all weather variables in all countries from 1979 to 2019.

We find evidence of positive and statistically significant country-specific trends in a majority of countries

for variables related to temperatures. Such trends are more rare for precipitation variables.

In our model specification, we assume that trends are time-invariant. To check the validity of this as-

sumption, we test for a structural break in trends with unknown break date for all variables in every

country. For most variables in most countries, we cannot reject the null hypothesis that there are no

significant structural breaks. We conclude that the assumption of time-invariant trends is acceptable.

We also test all first differences of weather variables for the presence of a unit root and we reject it in all

cases with p-values close to zero.

4. GDP Results

4.1. Climate variable selection

In our baseline specification, we use country and year fixed effects. After removing perfectly collinear

variables, the collinearity test we derived from Belloni et al. (2014) does not suggest dropping any of the

remaining 480 weather variables. The random search process based on the BIC selects 5 out of these

variables, with λ “ 0.033. The selected variables include the first two lags of GDP per capita growth and

three climate variables.

Panel a in Figure 2 shows how the BIC varies when the number of selected variables decrease as we

increase λ. We see a rapid improvement (decline) in the BIC as λ increases from low values and as

many climate variables are dropped. Once we reach a selection of 5 variables, each incremental increase

in λ and the associated exclusion of additional climate variables deteriorates (increase) the BIC sub-

stantially. As we increase λ from its optimal value, the smaller selections are strictly nested within the

optimal 5-variable selection, meaning that no new climate variables are introduced. This result is not

pre-determined because the algorithm does not impose that smaller selections are nested within larger

ones.

Implementing the random search to maximize criteria other than the BIC leads to larger selections of

variables (Figure 2 panels b and c). With the AIC, we obtain a selection of 36 variables. With the

out-of-sample R-squared we obtain selection of 18 variables, which do not change whether we split obser-

vations in the sample by country or we split the sample by drawing observations randomly and ignoring

the panel structure. We note that many of the climate variables in these larger selections are statistically

insignificant, indicating that, while they contribute to explaining the variation of the dependent variable,

they do not help much to understand the effect of weather on GDP variations (see Tables B.10-B.11 in

the online appendix). This lack of significance supports our choice of favoring the selection based on the

BIC.
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Figure 2: Selection of climate variables impacting GDP (baseline FE specification)
(a) Selection using the BIC

(b) Selection using the AIC (c) Selection using the out-of-sample within R2

Note: The figures show the results of implementing the LASSO for different penalty parameters λ. The red lines
are similar in every panel and show how the number of selected variables vary with λ. The grey dashed lines in
each panel show the variation of different criteria with λ. The within R-squared is calculated on a sub-sample of
countries (evaluation set) based on coefficients estimated on the rest of countries (training set) as explained in the
main text. The estimated model has GDP per capita growth as the dependent variable and includes country and year
effects. The dots indicate the different selection outcomes given by the local optimum for each criteria respectively.

Our preferred selection of climate variables derived using the BIC is robust to the use of alternative cri-

teria. These climate variables are also in the selection based on the AIC and based on the out-of-sample

within R-squared. Remarkably, the selections are nested within each other as all variables selected with

the BIC are in the set selected with the out-of-sample within R-squared, which is itself in the set selected

with the AIC.
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We examine the out-of-sample within R-squared to focus on the explanatory power of climate variables.

Our preferred specification with 5 variables improves the out-of-sample within R-squared by 29 per-

cent relative to a specification with just the 2 lags of the dependent variable as independent variables,

from 0.070 to 0.090. By construction, using out-of-sample within R-squared as selection criterion leads

to the largest out-of-sample R-squared, but adding 8 additional weather variables to the 5 variables se-

lected using the BIC only improves the out-of-sample within R-squared by 3 percent, from 0.090 to 0.092.

Figure 3: Global distribution of standard deviations of selected weather shocks

Harsh Drought Prevalence rW s Max T ˝C above 35 rW s

Mean T ˝C in [9; 12)

Notes: Each panel shows the percentiles of the global distribution of the standard deviation of the first difference
of a climate variable over the period 1979-2019. Variable definitions are detailed in appendix in Table A.1. [W]
indicates population-weighted variables.

4.2. The effect of weather variables on GDP growth

The three selected weather variables in our preferred specification with country and year effects are the

share of grid-days with PDSI less than ´4 corresponding to harsh droughts (Harsh Drought Prevalence),

the share of grid-days with hot temperature (Max T ˝C above 35), and the share of grid-days with mild

temperature (Mean T ˝C in [9; 12)). The LASSO selects population-weighted variables except for days

with mild temperature. Figure 3 shows the geographic distribution of the country standard deviation

of first differences for the three selected climate variables by percentile. In the online appendix, Table

B.3 displays a full set of summary statistics and Table B.4 shows correlation coefficients between GDP

growth, the fist two lags of GDP growth, and first differences of the selected climate variables.
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The correlation between the first differences and GDP growth is generally very low, ranging from 0.040

to 0.058 in absolute value. However, as a comparison, the correlation between the first difference of

average annual temperature and GDP growth is even smaller and equal to only -0.015. Among the se-

lected climate variables, the largest correlation is found between harsh droughts and hot temperatures

(0.180). Harsh droughts are also positively correlated with average annual temperature (0.156) because

temperature plays a role in the definition of the PDSI drought indicator. Hot temperatures and average

annual temperature are highly correlated in comparison with other variables (0.362) but average annual

temperature is not retained by the LASSO.

The selected climate variables have an intuitive effect on GDP, as shown in Table 1 where all the variables

are standardized using the same standard deviation across all years and countries to facilitate interpre-

tation. We find that harsh droughts and hot temperatures have adverse effects on GDP. By contrast, we

find that mild temperatures have beneficial effects on GDP. The distributions of temperature by country

are typically bell-shaped and the modes of these distributions are above 12 ˝C in the vast majority of

countries. Therefore, a warming shock typically implies fewer mild temperatures and, therefore, GDP

losses. All these effects are highly significant.

In our baseline specification (column A) we use the unbalanced panel and year fixed effects. A positive

shock equal to one standard deviation of the first difference of harsh droughts in a country reduces GDP

growth by 0.25 percentage points. Similarly, an increase in hot temperatures has a large and significant

effect on GDP growth. A positive shock equal to one standard deviation in the first difference of hot

temperatures reduces GDP growth by 0.17 percentage points. A positive shock equal to one standard

deviation in mild temperatures increases the growth rate by 0.14 percentage points.

Our more granular temperature measurements than in other macroeconomic studies reveal the harmful

effect of temperatures above 30-33 ˝C on country GDP that has been widely documented at a more disag-

gregated level for agricultural output (Schlenker and Roberts, 2009; Blanc and Schlenker, 2017), mortality

and energy consumption (Deschênes and Greenstone, 2011), time allocated to labor (Graff Zivin and Nei-

dell, 2014), and labor productivity (Somanathan et al., 2021). As these results remain significant at

the macro level they must be large at the sectoral level and/or widespread across sectors. While the

micro and macro effects of temperature are not easily comparable due to differences across studies and

different coverage of the economy, the impact of harsh droughts is similar to what found by other studies

(Cantelmo et al., 2023; IMF, 2020).

The selection of significant weather shocks includes variables constructed with both absolute (hot temper-

atures and mild temperatures) and relative thresholds (harsh droughts). For droughts, we find that drier

than average conditions are harmful, no matter what is the average precipitation level in a country. For

temperature, we find that the 35 ˝C threshold is selected over alternative definitions of high temperatures

based on the deviations from local and seasonal norms.
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Table 1: The effect of changes in selected climate variables on GDP per capita growth

(A) (B) (C) (D) (E) (F) (G)

First difference in

Harsh Drought Prevalence rW s -0.225*** -0.257*** -0.243*** -0.204*** -0.304***
(0.0532) (0.0525) (0.0521) (0.0529) (0.0611)

Max T ˝C above 35 rW s -0.168** -0.212*** -0.155** -0.173** -0.208**
(0.0670) (0.0663) (0.0630) (0.0673) (0.0916)

Mean T ˝C in [9; 12) 0.144*** 0.161***
(0.0377) (0.0384)

PPT Minimum rW s -0.191**
(0.0769)

Observations 6,653 6,653 6,653 6,653 6,653 6,653 4644
Year fixed effects Yes Yes Yes Yes No Yes Yes
World GDP growth No No No No Yes No No
Country quadratic trends No No No No No Yes No
Balanced No No No No No No Yes
R-squared 0.267 0.265 0.264 0.263 0.253 0.360 0.259
Within R-squared 0.0975 0.0947 0.0934 0.0924 0.145 0.0278 0.0880

Note: The table shows the country fixed-effect estimates of the effect of climate variables on the first differ-
ence of log real GDP per capita expressed in constant 2015 USD. The dependent variable is in percentage points.
All climate variables are standardized and their definitions are detailed in appendix in Table A.1. [W] indicates
population-weighted variables. Columns (A)-(F) show results from the full sample of 203 countries for 1979-2019.
All regressions include controls such as one or two lags of the dependent variables. Column E additionally includes
world growth as a control. Coefficient estimates of controls are reported in the appendix in Table A.2. Column G
is estimated on a balanced subsample of 129 countries for 1984-2019. Standard errors are clustered by country and
reported in brackets.

Interestingly, the LASSO selects both population-weighted and area-weighted variables, a new result in

the literature. This suggests more complex transmission channels that those previously assumed by stud-

ies that use only one weighting scheme. The choice of population weights for harsh droughts and hot

temperatures indicates that these are particularly important in relatively more populated areas, probably

indicating harmful effects of extreme temperature on labor productivity and the importance of abundant

water supply near to population centers. More mild temperatures have instead beneficial effects also in

areas with low population density.

Do our estimates identify the causal effects of weather on GDP? Our econometric strategy removes im-

portant potential sources of endogeneity. First differences and country fixed effects capture time-invariant

or very slow-moving variables that likely explain average growth rates, like the quality of institutions,

sectoral composition, market structures, geography, and climate itself. We also do not have reasons

to believe that our specification suffers from reverse causality because annual and infra-annual weather

shocks are largely exogenous with respect to contemporaneous economic activity. However, the use of

the LASSO or the EN for variable selection does not guarantee causal interpretation of our results.

The LASSO and the Elastic-Net allow us to select a small number of variables that are the best proxies

for the weather phenomena that impact GDP even as these phenomena preclude easy definition and mea-

surement. Some additional weather variables that would refine the characterization of these phenomena

may not be selected, either because their explanatory power is too small in our sample or because they

are not part of our initial set of climate variables.
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Our strategy works to maximize the fit of the model with a parsimonious number of variables, but

the theoretical weather phenomena of interest are measured with error and causal identification is com-

promised. Our variables capture the effect of the underlying relevant (but unknown and imperfectly

measured) weather phenomena on macro-fiscal variables. When discussing results we use “hot tempera-

tures”, “harsh droughts”, and “mild temperatures” instead of the exact definition of the selected variables

to emphasize the underlying weather phenomenon and de-emphasize a too strict literal interpretation of

our selected variables.

4.3. Robustness of the Selected Weather Shocks

Alternative fit criteria. The estimated effects of our selected weather shocks remain broadly un-

changed when including in the OLS regression the variables that are additionally selected when using

the AIC and the out-of-sample within R-squared criteria. Some of these variables are correlated with

the three climate variables from our main selection. The estimated effects of our three selected variables

tend to be smaller but remain significant (Tables B.10 and B.11 in the online appendix).

Separability of weather effects. We start by examining whether our selected climate variables have

an effect on their own or whether their estimated effects result from their combination. To this end, we

enter each variable separately in our specification with year and country effects as reported in columns

B-D of Table 1. Coefficient estimates are similar to those in the baseline column A, suggesting that the

main effect of each variable is mostly independent and additional to the effect of the other variables.

Alternative model specifications. We confirm the robustness of our variable selection and coef-

ficient estimates by considering alternative model specifications. For each model we repeat the LASSO

exercise with the BIC as for our baseline specification. In column E, we drop year fixed effects but we

introduce world GDP per capita growth as a candidate variable that can potentially be selected by the

LASSO to control for common world-wide developments. Under this specification, the LASSO leads to

the selection of five variables (Figure B.2) which indeed includes world GDP per capita growth (Table

B.6). The selection includes the two lags of the dependent variable as well as harsh droughts and hot

temperatures. It does not include mild temperatures. Column E of Table 1 shows that the coefficients

of the two climate variables used in our baseline specification are robust to this new specification.

We additionally consider a specification with country-specific quadratic trends in addition to year effects.

The LASSO selects five variables (Figure B.3), including also in this case the same two climate variables

selected in our baseline but excluding mild temperatures and the second lag of the dependent variable

(Table B.6). Column F of Table 1 shows that the coefficient estimates from the OLS estimation of the cli-

mate variables that are common to the baseline and to this new specification are, once again, very similar.
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We also implement our selection method on a balanced subsample with the 129 countries that have non-

missing observations continuously from 1984 to 2018. The LASSO selects five variables (Figure B.4),

including the same two climate variables consistently selected and a new climate variable, the population

weighted average over space of precipitation in the driest month, along with two lags of the dependent

variable (Table B.6). Results in column G in Table 1 shows that the effects of harsh droughts and of

hot temperatures remain robust. The new climate variable is estimated to have a negative GDP effect,

implying that an increase in precipitation in the driest months is detrimental.

Elastic-Net instead of LASSO. Our results are strikingly consistent when we use the EN instead

of the LASSO for all the model specifications in Table 1 and for all the alternative fit criteria. The opti-

mization process using the richer penalty term in equation (5) results in choosing parameter values that

put more weight on the penalty term of the LASSO. As a result, when we select variables to maximize the

BIC, we obtain the exact same variable selections for all model specifications, except in the case without

fixed effects where the only difference is that hot temperatures are dropped.

Further, Figure A.1 in the appendix shows the results of the optimization and selection process using

our baseline specification with country and year effects when we experiment with all the alternative fit

criteria. Again, we obtain consistent findings: in addition to the five variables selected with the BIC,

about a dozen more climate variables are selected with the AIC and the out-of-sample criteria and our

main three climate variables are always included. Additional selection results using the alternative fit

criteria are reported in the online appendix in Table B.7.

Inclusion of additional explanatory variables. We confirm the magnitude and relevance of the

selected weather shocks under richer specifications with more explanatory variables from the macroeco-

nomic literature (see Table A.3 in the appendix). The magnitude and statistical significance of our three

climate variables remain broadly unchanged if we control for additional lags of the dependent variables

(the third and fourth lags of GDP per capita growth) and lagged climate variables (first and second lags).

Among lagged climate variables, only the lagged value of mild temperatures is significant, and the coeffi-

cient estimate suggests that the positive effect of this shock unfolds gradually. We additionally introduce

controls that are known to be associated with GDP variations and two of their lags. The estimated effect

of violent conflicts (captured by a dummy variable and its lags from the Uppsala Conflict Dataset v23.1

(Gleditsch et al., 2002; Davies et al., 2023) are significant but do not alter our results. In our sample,

inflation dynamics (from the World Bank World Development Indicators — WDI) is estimated to be

insignificant and has no noticeable effects on our results. Exchange rate dynamics (also from the WDI)

and terms of trade dynamics (from Gruss and Kebhaj, 2019) are estimated to have significant effects but

leave the estimated effects of our climate variables essentially unchanged.

Alternative estimation choices. Table A.4 in the appendix shows that our results are robust to

the use of various alternative estimation choices and estimators. Estimation results after re-introducing
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outliers are quantitatively very close to those obtained after excluding outliers. There is one exception,

as the effect of mild temperatures is estimated to be only half as large and becomes insignificant. Fi-

nally, we address concerns about biases arising from measurement errors and the endogeneity of lagged

variables. In our main first-differences specification lags of the dependent variable are correlated with

the unobserved fixed effects, making standard estimators inconsistent even if the bias may be small in

practice. Specifically, we implement the Arellano-Bond estimator that uses further lags of the dependent

variable to instrument the lagged dependent variables. It requires that there is no autocorrelation in

the idiosyncratic errors. Because the result of an Arellano–Bond test for autocorrelation is a borderline

case, we also employ the Arellano–Bover/Blundell–Bond estimator that allows for idiosyncratic errors

that follow a first-order moving average process and only use late lags as instruments. Further, since

these GMM methods can suffer from weak/many instruments problem, particularly in cases where the

time dimension is moderately long as in our case, we additionally use the half-panel jackknife FE-TE

estimator showing little size distortions proposed by Chudik et al. (2016) and used in Kahn et al. (2021).

Overall, our results remain essentially unchanged.

4.4. Comparisons with the empirical macro literature

Does the set of variables we select improve substantially our understanding of GDP variations? We

examine this question by comparing our results with two central papers in the literature, Burke et al.

(2015) and Kahn et al. (2021).

We estimate the two papers’ respective baseline models using our sample and confirm their robustness.13

We follow the specification in Burke et al. (2015) and regress GDP growth on annual average temperature,

precipitation, the two squares of these variables, and include two lags of GDP growth, country quadratic

trends and year effects. Despite the fact that our sample is much smaller and other minor differences, we

obtain very similar coefficient estimates.14 Results in column B in Table 2 feature an inverted U-shaped

relationship between temperature and growth that is quantitatively close to that found by Burke et al.

(2015), with optimal temperature estimated to be equal to 13.3 ˝C (instead of 13.1 ˝C).

We compare the performance of our approach with the model in Burke et al. (2015) by introducing cli-

mate variables sequentially. Relative to a specification without climate variables (column A in Table 2),

the introduction of annual average temperature and precipitation and their squares improve the out-of-

sample within R-squared by a factor 5.15 If we additionally include our four selected climate variables,

the within R-squared increases much more, by a factor 13 (column C in Table 2). Similarly, both the AIC

and the BIC unambiguously improve with our selected variables, while neither support the introduction

of annual averages and their squares on their own.

13Both papers examine real GDP per capita growth. We use our GDP variable to facilitate comparisons across
specifications. For climate variables instead, we use the variables provided in the replication package of both papers.

14Our estimation sample starts in 1979 instead of 1960, and is 40 percent smaller with only 3,935 observations.
15The out-of-sample within R-squared increases from 0.001 to 0.005. It is small because of the large set of fixed

effects and country-specific quadratic trends, which absorb a lot of variations.
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Table 2: Estimation of the effect of climate shocks on GDP growth: comparisons with the literature

Burke et al. (2015) Kahn et al. (2021)

(A) base (B) unchanged (C) augmented (D) base (E) unchanged (F) augmented

Average Annual Temperature rW s 0.00909*** 0.00792**
(0.00305) (0.00308)

– squared -0.000374*** -0.000276***
(0.0000865) (0.0000921)

Average Annual Precipitation rW s 0.0000186* 0.00000275
(0.00000981) (0.00000904)

– squared -5.97e-09** -3.27e-09
(2.52e-09) (2.27e-09)

Harsh Drought Prevalence rW s -0.313*** -0.294***
(0.0777) (0.0654)

Max T ˝C above 35 rW s -0.200** -0.228***
(0.0979) (0.0694)

Mean T ˝C in [9; 12) 0.198*** 0.197***
(0.0503) (0.0593)

Temperature Deviations from Trend rW s -0.0275 0.00543
(0.0264) (0.0272)

Precipitation Deviations from Trend rW s -0.0757 -0.0620
(0.0663) (0.0661)

Country fixed effects yes yes yes yes yes yes
Country quadratic trends yes yes yes no no no
Year effects yes yes yes no no no

Observations 4,214 4,214 4,214 4,500 4,500 4,500
AIC -15,549 -15,567 -15,607 -15,141 -15,125 -15,170
BIC -15,530 -15,523 -15,543 -15,122 -15,029 -15,055
Out-of-sample within R2 0.001 0.005 0.014 0.075 0.073 0.080

Notes: Each column corresponds to a fixed-effect regression of the first difference in log real GDP per capita on lags
of the dependent variables and on climate variables for column B, C, E, and F. The within R-squared is calculated
using out-of-sample observations as described in the text. The estimations in columns D-F include 4 lags of the
deviation variables and are obtained with the half-panel jackknife FE estimator used in Kahn et al. (2021). rW s

indicates population-weighted variables. Estimates of the coefficients of lag variables that are omitted in this table
are reported in appendix Table A.5.

Turning our attention to Kahn et al. (2021), we adopt the same baseline specification focusing on the

absolute deviations of annual average temperatures and precipitations relative to their respective 30-year

moving average. Column E in Table 2 reports results that are again extremely similar to those originally

reported despite the smaller size of our sample.16 Their specification also includes four lags for each of

these variables that are mostly significant and reported in appendix Table A.1. In this case, the intro-

duction of their climate variables relative to a basic case abstracting from climate fails to improve the

out-of-sample within R-squared (columns D-E in Table 2). Furthermore, both the information criteria

do not support the relevance of their climate variables. By contrast, additionally including our selected

variables improves the out-of-sample within R-squared by 7 percent.17 In this sample, the relevance of

our selected variables is supported by a lower AIC but not by the BIC. Overall, a range of performance

16Our estimation sample starts in 1979 instead of 1960, and is 25 percent smaller with only 4,917 observations.
17Increases in the within R-squares are much smaller compared to the increases in specifications with country

trends a la Burke et al. (2015) because the within R-squared in the base case of no climate variable is much smaller
with country trends. Country-specific quadratic trends absorb a large amount of variation, leaving little to be
explained in the within R-squared.
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indicators suggests that our climate variables are much more relevant in explaining GDP growth varia-

tions than annual average temperature and precipitation.

Our findings imply that the magnitude of current weather impacts on GDP growth is larger than what is

suggested in Kahn et al. (2021) and Burke et al. (2015). The effects captured by our variables are, at least

partially, additional to the effects that are reported in these two papers. This is shown by the fact that the

introduction of our weather variables does not fully remove the significance of the variables of these papers.

Furthermore, the effects captured by our variables alone have similar or greater impacts on GDP than

previously reported. To compare the results in Kahn et al. (2021) and Burke et al. (2015) with ours, we

focus on temperature variables because the effects of their precipitation variables are largely insignificant.

We consider the following shocks. In the case of Kahn et al. (2021), a temperature deviation from country

trends equal to one standard deviation (0.029 ˝C) lowers GDP growth by 0.08 percentage points.18 This is

at most half the size of the effects of any of our selected weather shocks. In the case of Burke et al. (2015),

we calculate the GDP loss implied by the typical inter-annual variation in temperature. Specifically, we

consider a hypothetical country with an annual temperature equal to the global average (19.13 ˝C) and

the variation in its GDP growth implied by an increase in annual temperature that is equal to one

standard deviation of the inter-annual change in average temperature (0.55 ˝C). Using the estimates

from our replication exercise (column B), we find that GDP growth would be cut by 0.29 percent.19 This

effect is quantitatively comparable to the weather shocks that we identified.

4.5. The persistent effects of weather shocks

We examine GDP effects of weather variables in the years following the initial shock by using the local

projection method. For each variable, we estimate the impulse response to a one standard deviation

shock as described in Section 2.2. The flexibility of this approach allows us to investigate if a climate

shock has a temporary effect, a persistent effect on GDP levels, or a persistent effect on GDP growth.

The distinction between “level” and “growth” effects often used in the literature can be confusing. In

practice, a one percent reduction in the growth rate between any two years is equivalent to a one percent

“level” loss of GDP.20 The precise question we address is whether weather shocks in one year can have

persistent impacts, affecting GDP both instantaneously and in future years, by estimating the magnitude

of these impacts at different horizons.

18The loss is given by ´0.0275 ˚ 0.029 “ ´0.0008.
19In other words, we calculate the change in GDP growth implied from having an average temperature increasing

from 19.13 ˝C to 19.68 ˝C. The loss is given by p0.0091˚19.68´0.00037˚19.682q´p0.0091˚19.13´0.00037˚19.132q “

´0.0029. If we use the coefficient estimates reported in their paper, we obtain a loss of similar magnitude (0.37
percent).

20Similarly, over a longer time horizon, damage functions that give percentage losses of GDP from gradual
climate change used in integrated assessment models (e.g., Nordhaus 1993; Tol 1997; Bosetti et al. 2006; Barrage
and Nordhaus 2023) can be given both a “level” and a “growth” interpretation. For a review of “growth” versus
”levels” econometric models of the GDP-temperature relationship see Newell et al. (2021).

25



The results in Figure 4 show that our selected climate shocks have persistent effects on GDP levels

that remain broadly significant and stable over the 7-year horizon we consider. Specifically, a one-year

increase in mild temperatures has a positive effect that remains stable and significant throughout the

period considered (Panel c). The respective adverse effects of an increase in harsh droughts and in hot

temperatures are also stable, albeit subject to slightly more uncertainty (Panels a and b). The effects still

remain significant over most of the horizons considered. The results in Figure 4 also show clearly that all

effects do not affect GDP growth after the initial impact. If any of these variables had a persistent effect

on GDP growth, the absolute value of the coefficient estimates would increase with the horizon considered.

The literature reaches similar empirical results when it tests the persistence of the effect of weather on

GDP. Both Dell et al. (2012) and Burke et al. (2015) find that lagged effects of temperature are mostly

non significant and with many sign reversals.21 Kahn et al. (2021) find that shocks have a persistent

effect on GDP level peaking after a few years.

Figure 4: Persistence of selected weather shocks on GDP per capita

(a) Harsh Drought Prevalence rW s

Years after the shock

(b) Max T ˝C above 35 rW s

Years after the shock

(c) Mean T ˝C in [9; 12)

Years after the shock

Notes: Each panel depicts the impulse response of per capita output in levels to a one standard deviation shock
of the corresponding climate variable. Horizon 0 is the year of the shock. The shaded areas show the 90 percent
confidence intervals around estimates. rW s indicates population-weighted variables.

4.6. Heterogeneity

We test if results obtained using the whole sample of countries are different from those obtained using

sub-groups of homogeneous countries. This exercise provides both a robustness test and new insights on

21Burke et al. (2015) examine dynamics effects of temperature at longer horizons with lags, but conclude that
they “cannot reject the hypothesis that this effect is a true growth effects nor can [they] reject the hypothesis
that it is a temporary level effect” (Section C.2 of Supplementary Information). Dell et al. (2012) find that the
cumulative effect of temperature is significant for poor countries, albeit smaller than the contemporaneous effect.
They interpret this as evidence of a “growth effect”, but our interpretation aligns more closely with Newell et al.
(2021): small, non-significant lagged temperature coefficients suggest a permanent impact on the level of GDP
rather than on growth.

26



the channels through which climate shocks affect GDP per capita.

We differentiate countries between rich and poor, hot and cold, agricultural and non-agricultural, agri-

cultural cold and agricultural hot, with strong and weak democratic institutions. We further divide

countries into six macro-regional groups to explore regional heterogeneity, and we compare earlier years

of the panel (1979-1999) with more recent years (2000-2019). For each subgroup, we use the same vari-

ables selected by the LASSO for the baseline specification because we are primarily concerned with the

robustness of estimates across groups. We leave selection of variables by group to future research. For a

detailed description of each group see the notes to Figure 5.

We find that our main results are generally confirmed across groups (Figure 5). Coefficients tend to

remain significant, there are no significant sign switches, and coefficients are almost never significantly

different between groups. However, there is suggestive evidence that aggregate results might be driven

by specific vulnerabilities in sub-groups of countries.

Harsh droughts are significantly harmful in almost all groups. A key vulnerability to harsh droughts

comes from a large agricultural sector. Harsh droughts are not significant in hot countries, but they are

significant in hot agricultural countries. Droughts are more harmful in agricultural cold countries than

in cold countries. Poor countries are more affected than rich countries probably because they have a

relatively larger agricultural sector. Across regions, droughts in Sub-Saharan Africa (SSA) and in the

Europe and Central Asia region (ECA) have large and significant negative impacts. These are the regions

with the largest exposure to droughts (see Figure 3). The effect of droughts is instead not significant in

Latin American and the Caribbean (LAC), in Eastern Asia and Pacific (EAP), and in Middle East and

North Africa (MENA). The small sample size of the MENA region may explain why the large negative

impact is not significant. Droughts are less harmful in countries that have a high electoral democracy

index relative to countries with a low index, but the confounding effect of income cannot be excluded.

To further examine the importance of institutions in shaping the effect of droughts on the economy, we

separate poor countries among those with high and low electoral democracy indexes. Results indicate

that droughts are more damaging in poor countries that have low democratic institutions relative to poor

countries. The effect of droughts in poor countries that rank high in democracy is not significant from

zero. These results provide suggestive evidence that institutions play a role, similarly to what is found

by (Kahn, 2005) when studying the impact of natural disasters on deaths. However, the results among

groups are not statistically significant and a more in-depth analysis of the role of institutions is left for

future research. Droughts are significantly harmful in both the first and the second part of the panel, but

their impact has more than halved over time. This could be the outcome of economic and institutional

development and the reduction of the share of agriculture in GDP in many countries.

The harmful effect of high temperatures is generally not significant in cold countries or in groups with

a high share of cold countries, because maximum daily temperatures above 35 ˝C are rarely observed

in these areas. Hot temperatures are equally harmful in poor and rich countries, agricultural and non-
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Figure 5: Weather Coefficients Across Groups

(a) Harsh Drought Prevalence rW s (b) Max T ˝C above 35 rW s

(c) Mean T ˝C in [9; 12)

Notes: Each panel depicts the estimated coefficient for each weather variable using our baseline specification (col-
umn A in Table 1) for different sub-groups. Climate variables are standardized and their definitions are detailed
in appendix Table A.1. The vertical lines show the 95 percent confidence intervals using standard errors clus-
tered by country. rW s indicates population-weighted variables. Hot (N=3,315): 1979-2019 average temperature
ą 22.8 ˝C. Cold (N=3,338): 1979-2019 average temperature ď 22.8 ˝C. Agricultural (N=3,119): share of “Agri-
culture, forestry, and fishing, value added (% of GDP)” in 2002 is above median across countries. Non Agricultural
(N=3,107): countries that are not Agricultural. Agricultural Cold (N=1,334): agricultural and cold. Agricultural
Hot (N=1,785): agricultural and hot. Rich (N=3,936): “High Income” and “Upper Middle Income” in WDI. Poor
(N=2,717): “Low Income” and “Lower Middle Income” in WDI. SSA (N=1,656): Sub-Saharan Africa. MENA
(N=620): Middle-East and North Africa. LAC (N=1,372): Latin America and the Caribbean. ECA (N=1,632):
Europe and Central Asia. EAP (N=1,013): Eastern Asia and Pacific. None of the coefficients is significant for
North America and South Asia, due to the low number of countries in these regions. High Democracy (N=3,895)
and Low Democracy (N=2,753): countries with average value of the V-Dem Project Electoral Democracy Index
from the the Varieties of Democracies (V-Dem) project Coppedge et al. (2023) above (below) the median in our
sample. High Democracy and Poor (N=950), Low Democracy and Poor (N=1,766). 1979-1999 (N=2,762) and
2000-2019 (N=3,891). The V-Dem index aggregates indices measuring freedom of association, clean elections, free-
dom of expression, elected officials, and suffrage (Coppedge et al., 2023). Table B.5 in the online appendix features
summary statistics by sub-group for GDP per capita and climate variables.
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agricultural countries. This suggests that the harmful impact of hot temperatures is not confined to

the agricultural sector but may affect labor productivity at large, as found by the empirical sectoral

literature. SSA, with mostly agricultural, poor and hot countries, and EAP are the only regions with a

significant harmful effect. The effect of hot temperatures is never significant when we compare countries

with weak and strong democratic institutions. The negative impact of high temperatures is much larger

when estimated using the first part of the panel. As for droughts, the effect of high temperature in more

recent years is smaller and, in this case, becomes non-significant possibly for similar reasons.

The effect of mild temperatures is not significant in countries that are agricultural and hot, and poor.

This is due to the relatively low frequency of these temperatures in these groups. The positive impact

is particularly large in agricultural cold countries and in hot countries. This suggests that the variable

is picking the beneficial effect of cooler than average temperatures in hot countries and of warmer than

average temperatures in cold agricultural countries, reducing heat stress on crops in the first group and a

longer growing season either in spring or fall in the second group (Massetti et al., 2016; Mendelsohn and

Massetti, 2017). Among regional groups, the effect is positive and significant only in the ECA region,

which comprises many cold agricultural countries. There are no significant differences among countries

when we separate them using the Electoral Democracy Index. Also in this case there is an indication

that the impact of weather on GDP becomes smaller as time goes by.

5. Macro-Fiscal Outcomes
In this last section, we investigate whether our selected weather shocks are typically associated with a

fiscal policy response that amplifies or mitigate their effect on GDP. We also apply our approach to see

what other weather shocks have a substantial impact on fiscal variables.

We consider three main fiscal indicators: government revenue, expenditure, and debt. We start by study-

ing the effect of weather shocks on these variables measured by their GDP ratio as is standard practice in

fiscal policy analysis. We supplement this analysis by considering the effect of weather shocks on the per-

cent change of the fiscal variables expressed in constant 2011 USD. Examining variations in levels allows

us to separately identify the effects of climate shocks on the numerator (fiscal variable) and denominator

(GDP) of the ratios, as these can be of different magnitude and opposite sign.

We present empirical OLS estimates of the relationships between weather shocks and macro-fiscal out-

comes in Table 3. Our goal is to study how climate shocks affect GDP and all fiscal outcomes system-

atically while keeping the selection of variables compact. Therefore, we restrict the selection of climate

variables: we keep those three that were selected in our baseline study of GDP and only introduce three

additional climate variables: the first variable that LASSO selects independently for each of the three

fiscal ratios. The full list of the variables selected by LASSO using the BIC criteria and the associated

results for every fiscal variables are reported in the online appendix (Table B.9).22

22These variables systematically include the first variable that we report in the main text, meaning that the first
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Our sample becomes smaller when we introduce fiscal variables because of their narrower coverage. To

allow for a meaningful comparison across macro-fiscal outcomes, we implement our analysis on the sample

with non-missing values for all macro-fiscal variables. The smaller sample size and the addition of other

weather variables explain the difference in results obtained for GDP growth compared to the previous

section (column A in Table 1 versus column A in Table 3). Each weather effect separately tends to

become smaller and the effect of hot temperatures becomes insignificant.

The three climate shocks previously identified have a significant impact on many fiscal policy ratios.

Columns (B)-(D) in Table 3 show that more harsh drought prevalence leads to a significant increase of

0.11 percentage points in the expenditure-to-GDP ratio. Further, an increase in the occurrence of hot

temperatures and a decrease in the occurrence of mild temperatures are associated with a significantly

lower revenue-to-GDP ratio (respectively by 0.14 and by 0.08 percentage points). In these three cases,

the effect is not entirely driven by a change in the denominator as we verify that there is a consistent

change in the numerator (see Table A.6 in appendix). On the other hand, these three climate variables

do not impact the debt ratio significantly.

The fiscal policy response to the three climate shocks that we identified as relevant for GDP mitigates

direct GDP effects. In all three cases, the estimated effects of the weather shocks on the fiscal balance,

which is the difference between the effect on revenue and spending, has the same sign as the effect on

GDP. Government spending increases in response to droughts. This could come from relief measures (ei-

ther built in automatic stabilizers or ad-hoc) or because droughts raise the cost of government purchases.

In the case of revenue, its drop following a temperature shock could result from high-tax sectors, goods,

or agents being disproportionally affected by the shock. Overall and assuming that the fiscal multiplier

is non-zero, the results suggest that the direct effect on GDP of the weather shocks would be larger if

fiscal policy were neutral (i.e., if the fiscal ratios remained constant).

Applying the LASSO to select new climate variables that are relevant for explaining fiscal ratios results

in the selection of new variables with mixed effects. These three new variables have relatively small and

insignificant effects on GDP per capita.

For government revenue, the LASSO selects the lag of the variable “Longest Day Cold Wave”, which

counts the number of days in the longest period during which day temperatures are substantially below

seasonal norms for at least three consecutive days.23 We find that longer day cold waves in the previous

variable to be selected does not get dropped at a later stage when additional variables are introduced to maximize
the BIC. The algorithm performance as a function of the penalty parameter λ is reported in the online appendix
in Figures B.5-B.7.

23Seasonal norms are defined for every calendar day over the 15-day window centered on that day. We determine
that temperatures are substantially below seasonal norms when temperatures are below the 10th percentile of the
distribution of temperatures in the aforementioned windows in all years 1979-2019. See Table A.1 in appendix for
mathematical definitions.
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Table 3: Estimates of macro-fiscal effects of selected climate variables

(A) (B) (C) (D)

∆ ln GDP
POP

∆Revenue
GDP

∆Expenditure
GDP

∆Debt
GDP

(p.p.) (p.p.) (p.p.) (p.p.)

Lag-1 dependent variable 0.211*** -0.131*** -0.118 0.106***
(0.0487) (0.0205) (0.0861) (0.0306)

Lag-2 dependent variable 0.0966** -0.137*** -0.0911 0.0248
(0.0411) (0.0145) (0.0760) (0.0267)

First difference in

Harsh Drought Prevalence rW s -0.180*** 0.0625 0.108** -0.0765
(0.555) (0.0431) (0.0493) (0.0957)

Max T ˝C above 35 rW s -0.0452 -0.135** -0.0454 -0.0603
(0.0629) (0.0525) (0.0542) (0.127)

Mean T ˝C in [9; 12) 0.129*** 0.0750* -0.0636 0.00017
(0.0448) (0.0417) (0.0654) (0.0975)

Lag-1 Longest Day Cold Wave rW s 0.0454 -0.232* -0.0766 0.200
(0.0434) (0.137) (0.0889) (0.136)

Mean Wet Day PPT -0.0501 -0.0145 -0.197*** 0.0674
(0.0608) (0.0755) (0.0695) (0.115)

Lag-1 PPT Minimum 0.132 0.00557 0.0302 -0.313***
(0.0858) (0.0464) (0.0715) (0.102)

Constant 1.381*** 0.0782*** 0.0599*** 0.193***
(0.0912) (0.00153) (0.00879) (0.00488)

Observations 3,890 3,890 3,890 3,890
R-squared 0.304 0.118 0.0818 0.160

Note: The dependent variables are indicated in the column titles and are expressed in percentage points. We
use the same three climate variables used for GDP growth and the first climate variables selected by the LASSO
respectively for government revenue, expenditure, and debt. All climate variables are standardized. rW s indicates
population-weighted variables. Controls include the first two lags of the dependent variable (reported in the first two
rows), and year and country fixed effects. Standard errors are clustered by country and reported in brackets.

year are associated with a significant 0.23 percentage point decline in the revenue ratio and a comparable

(although insignificant) increase in the debt ratio. The expenditure ratio is left mostly unchanged.

For government spending and debt, the LASSO respectively selects the mean precipitation in wet days

and the average across space of precipitation in the driest month.24 Less precipitation in wet days is

estimated to raise the expenditure ratio by 0.20 percentage points while less precipitation in the driest

month of the previous year is estimated to raise the debt ratio by 0.31 percentage points. These variables

seem to leave our other variables mostly unchanged.

In summary, we find that weather shocks can have rich and sizeable effects on fiscal aggregates, although

their impacts are not always significant and can be hard to interpret. When the weather shocks have a

clear effect on GDP, we find that the response of fiscal policy tends to act counter-cyclically. In other

cases and generally, a more granular investigation would be needed to better understand the sectoral

channels through which climate affects macro-fiscal outcomes.

24See Table A.1 in appendix for mathematical definitions.
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6. Conclusion

In this paper, we show how to leverage large global weather datasets with high-frequency and high-

resolution data to estimate the impact of weather on country-year macro-fiscal outcomes. We propose a

method that relies on a mix of expert judgement and machine learning techniques, including the LASSO

and Elastic-Net.

We use our method to construct and select a few variables capturing harsh droughts and hot and mild

temperatures. We reconcile the macro and micro literature by showing that weather extremes that had

been shown to be harmful at the sectoral level are also harmful at the macro level. We find that a shock

of one standard deviation to any of our selected variables lowers GDP growth by about 0.2 percent in

the year of the shock, even as we also find evidence that fiscal policy responds to mitigate such shocks.

Surprisingly, country annual average temperature, the variable most frequently used in the macro liter-

ature, is never part of the core set of variables that is selected with our method. Our selected weather

variables are indeed far better in explaining GDP growth also when using data and methods of important

papers in the literature.

Our method can be used to examine additional climate variables such as humidity and wind, climate

phenomena like tropical cyclones and other macroeconomic and sectoral outcomes, such as the impact of

weather on health, agriculture, labor productivity, trade, and inflation.
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A. Appendix

Table A.1: Definitions of climate variables

Variable Model Descriptor Spatial Time Definition Ref

Temperature

Tj,d Mean Temperature Grid Day

Td Mean Temperature Country Day
ř

j Tj,d{J

T L Mean Temperature Country Year
ř

d Td{365

TV ar L Temperature Variance Country Year
ř

d pTd ´ T q
2

{ p365 ´ 1q

TNj,d Daily Temperature Mini-

mum

Grid Day Note: temperature minimums almost always occur

at night

TXj,d Daily Temperature Maxi-

mum

Grid Day Note: temperature maximums almost always occur

in daytime

TNd Daily Minimum T ˝C Country Day
ř

j TNj,d{J

TXd Daily Maximum T ˝C Country Day
ř

j TXj,d{J

DTRd Diurnal T ˝C Range Country Day TXd ´ TNd

DTR L Diurnal T ˝C Range Country Year
ř

d DTRd{365

TNppkqd Percentile of Daily Mini-

mum Temperature

Country Day pth percentile of the 1979-2019 distribution of TNd

in a k-day window centered on d

TXppkqd Percentile of Daily Maxi-

mum Temperature

Country Day pth percentile of the 1979-2019 distribution of TXd

in a k-day window centered on d

CN10 L # of Cold Nights Country Year
ř

d rTNd ă TN10p5qds a

CD10 L # of Cold Days Country Year
ř

d rTXd ă TX10p5qds a

WN90 L # of Warm Nights Country Year
ř

d rTNd ą TN90p5qds a

WD90 L # of Warm Days Country Year
ř

d rTXd ą TX90p5qds a

TNn L Night T ˝C Minimum Country Year Minimum of minimum daily temperature,
ř

j mind
␣

TNj,d

(

{J

d

TXx L Day T ˝C Maximum Country Year Maximum of maximum daily temperature,
ř

j maxd
␣

TXj,d

(

{J

d

Continued on next page

Notes: The letter L in the second column indicates whether a variable is used in the LASSO procedure. The letter
R indicates the variables used in any of the OLS regressions. In the last column, a refers to Kim et al. (2020), b
refers to Perkins and Alexander (2013), c refers to Palmer (1965), and d refers to IPCC (2021c). For more details
about variable definitions, see Section B.2 in the online appendix.
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Table A.1 (Continued): Definitions of climate variables

Variable Model Descriptor Spatial Time Definition Ref

Heat Waves

DDHW L Heat Wave Days Country Year Number of days in which TXd ą TX90p15qd for at

least 3 consecutive days

b

DNHW L Heat Wave Nights Country Year Number of nights in which TNd ą TN90p15qd for

at least 3 consecutive days

b

LDHW L Longest Day Heat Wave Country Year Number of days in the longest period during which

TXd ą TX90p15qd for at least 3 consecutive days

b

LNHW L Longest Night Heat Wave Country Year Number of days in the longest period during which

TNd ą TN90p15qd for at least 3 consecutive days

b

NDHW L # of Day Heat Waves Country Year Number of intervals of at least 3 consecutive days

in which TXd ą TX90p15qd

b

NNHW L # of Night Heat Waves Country Year Number of intervals of at least 3 consecutive days

in which TNd ą TN90p15qd

b

TDHW L Day Heat Wave T ˝C Country Year Average TXd during day heat waves (intervals

of at least 3 consecutive days in which TXd ą

TX90p15qd)

b

TNHW L Night Heat Wave T ˝C Country Year Average TNd during night heat waves (intervals

of at least 3 consecutive days in which TNd ą

TN90p15qd)

b

Cold Waves

DDCW L Cold Wave Days Country Year Number of days in which TXd ă TX10p15qd for at

least 3 consecutive days

b

DNCW L Cold Wave Nights Country Year Number of days in which TNd ă TN10p15qd for at

least 3 consecutive days

b

LDCW L, R Longest Day Cold Wave Country Year Number of days in the longest period during which

TXd ă TX10p15qd for at least 3 consecutive days

b

LNCW L Longest Night Cold Wave Country Year Number of days in the longest period during which

TNd ă TN10p15qd for at least 3 consecutive days

b

NDCW L # of Day Cold Waves Country Year Number of intervals of at least 3 consecutive days

in which TXd ă TX10p15qd

b

NNCW L # of Night Cold Waves Country Year Number of intervals of at least 3 consecutive days

in which TNd ă TN10p15qd

b

TDCW L Day Cold Wave T ˝C Country Year Average TXd during day heat waves (intervals

of at least 3 consecutive days in which TXd ă

TX10p15qd)

b

Continued on next page

Notes: The letter L in the second column indicates whether a variable is used in the LASSO procedure. The letter
R indicates the variables used in any of the OLS regressions. In the last column, a refers to Kim et al. (2020), b
refers to Perkins and Alexander (2013), c refers to Palmer (1965), and d refers to IPCC (2021c). For more details
about variable definitions, see Section B.2 in the online appendix.
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Table A.1 (Continued): Definitions of climate variables

Variable Model Descriptor Spatial Time Definition Ref

TNCW L Night Cold Wave T ˝C Country Year Average TNd during night heat waves (intervals

of at least 3 consecutive days in which TNd ă

TN10p15qd)

b

Cold and Warm Spells

CSD L Cold Spell Duration Country Year Number of days in which TNd ă TN10p5qd is ob-

served in intervals of at least 6 consecutive days

a

WSD L Warm Spell Duration Country Year Number of days in which TXd ą TX90p5qd for at

least 6 consecutive days

a

Temperature Absolute Thresholds

TN0 L Frost prevalence Country Year Share of grid-days with frost,
ř

d

ř

j

“

TNj,d ă 0
‰

{pJ ˆ 365q

d

TX35 L, R Max T ˝C above 35 Country Year Share of grid-days with maximum daily tempera-

ture above 35 ˝C,
ř

d

ř

j

“

TXj,d ą 35
‰

{ pJ ˆ 365q

d

TX40 L Max T ˝C above 40 Country Year Share of grid-days with maximum daily tempera-

ture above 40 ˝C,
ř

d

ř

j

“

TXj,d ą 40
‰

{ pJ ˆ 365q

d

TSă´9 Mean T ˝C below 9 Country Year Share of grid-days with mean temperature below -9
˝C,

ř

d

ř

j

“

Tj,d ă ´9
‰

{ pJ ˆ 365q

TSrx1,x2q L,R Mean T ˝C in rx1, x2q Country Year Share of grid-days with mean temperature in the in-

terval rx1, x2q,
ř

d

ř

j

“

x1 ď Tj,d ă x2

‰

{ pJ ˆ 365q.

We use increments of 3 ˝C from -9 ˝C to 30 ˝C for

x1, x2.

TSě30 L Mean T ˝C above 30 Country Year Share of grid-days with mean temperature above 30
˝C,

ř

d

ř

j

“

Tj,d ě 30
‰

{ pJ ˆ 365q

Precipitation

Pj,d Precipitation (PPT) Grid Day

Pd Precipitation (PPT) Country Day
ř

j Pj,d{J

P L Mean Precipitation Country Year
ř

d Pd{365

PWd Wet Day Precipitation Country Day Pd rPd ě 1s

PWT Wet Day Precipitation Country Year
ř

d Pd rPd ě 1s

W L # of Wet Days Country Year
ř

d rPd ě 1s

PWA L, R Mean Wet Day PPT Country Year Average daily precipitation in wet days, PTW {W

PV ar L Precipitation Variance Country Year
ř

d pPd ´ P q
2

{ p365 ´ 1q

PWV ar L Wet Day PPT Variance Country Year
ř

d pPd ´ PWAq
2

rPd ě 1s { pW ´ 1q

PWpj Percentile of Daily Pre-

cipitation in Wet Days

Grid 1979-

2019

pth percentile of the 1979-2019 daily distribution of

PWd (using only wet days) in grid cell j

Continued on next page

Notes: The letter L in the second column indicates whether a variable is used in the LASSO procedure. The letter
R indicates the variables used in any of the OLS regressions. In the last column, a refers to Kim et al. (2020), b
refers to Perkins and Alexander (2013), c refers to Palmer (1965), and d refers to IPCC (2021c). For more details
about variable definitions, see Section B.2 in the online appendix.
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Table A.1 (Continued): Definitions of climate variables

Variable Model Descriptor Spatial Time Definition Ref

PWp Percentile of Daily Pre-

cipitation in Wet Days

Country 1979-

2019

pth percentile of the 1979-2019 daily distribution of

PWd (using only wet days)

P95WT L Very Wet Day PPT Country Year
ř

d Pd rPd ě 1 and PWd ą PW95s a

P99WT L Extremely Wet Day PPT Country Year
ř

d Pd rPd ě 1 and PWd ą PW99s a

CDD L Cont’d Dry Days Country Year Largest number of consecutive days with Pd ă 1mm a

CWD L Cont’d Wet Days Country Year Largest number of consecutive days with Pd ě 1mm a

PCWD L Cont’d Wet Day PPT Country Year Total precipitation during the longest period of con-

secutive wet days with Pd ě 1

C95WD L Cont’d Very Wet Days Country Year Largest number of consecutive wet days with

PWd ą PW95

C99WD L Cont’d Extra Wet Days Country Year Largest number of consecutive wet days with

PWd ą PW99

PC95WD L Cont’d Heavy PPT Country Year Total precipitation during the longest period of con-

secutive very wet days with PWd ě PW95

PC99WD L Cont’d Extreme PPT Country Year Total precipitation during the longest period of con-

secutive extremely wet days with PWd ě PW99

PXp5q L 5-Day PPT Maximum Country Year Maximum 5-day precipitation, maxd

!

ř4
i“0 Pd´i

)

a

PXp1q L 1-Day PPT Maximum Country Year Maximum 1-day precipitation, maxd tPdu a

Pj,m Monthly Precipitation Grid Month
ř

d Pj,d

PXM L PPT Maximum Country Year Max 1-month precipitation,
ř

j maxm tPj,mu/J

PNM L, R PPT Minimum Country Year Min 1-month precipitation,
ř

j minm tPj,mu/J

Precipitation Absolute Thresholds

LLDS.5 L Longest Dry Spell (.5) Country Year Maximum number of days in a Dry Spell, de-

fined as an uninterrupted series of days in which
ř

j

“

Pj,d ă 1
‰

{J ą 0.50

LLDS.65 L Longest Dry Spell (.65) Country Year Maximum number of days in a Dry Spell, de-

fined as an uninterrupted series of days in which
ř

j

“

Pj,d ă 1
‰

{J ą 0.65

LLDS.80 L Longest Dry Spell (.80) Country Year Maximum number of days in a Dry Spell, de-

fined as an uninterrupted series of days in which
ř

j

“

Pj,d ă 1
‰

{J ą 0.80

LLDS.95 L Longest Dry Spell (.95) Country Year Maximum number of days in a Dry Spell, de-

fined as an uninterrupted series of days in which
ř

j

“

Pj,d ă 1
‰

{J ą 0.95

PSď1 L Less than 1 mm PPT Country Year Share of grid-days with precipitation less than 1

mm,
ř

d

ř

j

“

Pj,d ď 1
‰

{ pJ ˆ 365q

Continued on next page

Notes: The letter L in the second column indicates whether a variable is used in the LASSO procedure. The letter
R indicates the variables used in any of the OLS regressions. In the last column, a refers to Kim et al. (2020), b
refers to Perkins and Alexander (2013), c refers to Palmer (1965), and d refers to IPCC (2021c). For more details
about variable definitions, see Section B.2 in the online appendix.
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Table A.1 (Continued): Definitions of climate variables

Variable Model Descriptor Spatial Time Definition Ref

PS1 10 1 to 10 mm PPT Country Year Share of grid-days with precipitation between 1 and

10 mm,
ř

d

ř

j

“

1 ă Pj,d ď 10
‰

{ pJ ˆ 365q

PS10 20 L 10 to 20 mm PPT Country Year Share of grid-days with precipitation between 10

and 20 mm,
ř

d

ř

j

“

10 ă Pj,d ď 20
‰

{ pJ ˆ 365q

PSą20 L Above 20 mm PPT Country Year Share of grid-days with precipitation above 20 mm,
ř

d

ř

j

“

Pj,d ą 20
‰

{ pJ ˆ 365q

MaxPą10 L Heavy PPT Maximum Country Year maxd

!

ř

j

“

Pj,d ą 10
‰

{J
)

MaxPą20 L Extreme PPT Maximum Country Year maxd

!

ř

j

“

Pj,d ą 20
‰

{J
)

BP1 10p0.5q L Balanced PPT Indicator Country Year ´

ˇ

ˇ

ˇ

ř

d

ř

jr1 ă Pj,d ď 10s{pJ ˆ 365q ´ 0.5
ˇ

ˇ

ˇ

Droughts

PDSIj,m Palmer Drought Severity

Index

Grid Month c

PDSIă´3 L Drought Prevalence Country Year
ř

m

ř

j rPDSIj,m ă ´3s { pJ ˆ 12q c

PDSIă´4 L, R Harsh Drought Preva-

lence

Country Year
ř

m

ř

j rPDSIj,m ă ´4s { pJ ˆ 12q c

PDSIą3 L Wet Conditions Preva-

lence

Country Year
ř

m

ř

j rPDSIj,m ą 3s { pJ ˆ 12q c

PDSIą4 L Very Wet Conditions

Prevalence

Country Year
ř

m

ř

j rPDSIj,m ą 4s { pJ ˆ 12q c

MPDSIă´3L Drought Intensity Country Year maxm
!

ř

j rPDSIj,m ă ´3s {J
)

c

MPDSIă´4L Harsh Drought Intensity Country Year maxm
!

ř

j rPDSIj,m ă ´4s {J
)

c

MPDSIą3 L Wetness Intensity Country Year maxm
!

ř

j rPDSIj,m ą 3s {J
)

c

MPDSIą4 L High Wetness Intensity Country Year maxm
!

ř

j rPDSIj,m ą 4s {J
)

c

Notes: The letter L in the second column indicates whether a variable is in the set of climate variables used in the
LASSO procedure. The letter R indicates the variables used in any of the OLS regressions. In the last column, a
refers to Kim et al. (2020), b refers to Perkins and Alexander (2013), c refers to Palmer (1965), and d refers to
IPCC (2021c). For more details about variable definitions, see Section B.2 in the online appendix.
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Table A.2: The effect of changes in selected climate variables on GDP per capita growth

(A) (B) (C) (D) (E) (F) (G)

Lag-1 GDP p.c. Growth 0.215*** 0.213*** 0.213*** 0.213*** 0.223*** 0.126*** 0.236***
(0.0332) (0.0333) (0.0333) (0.0334) (0.0327) (0.0366) (0.0292)

Lag-2 GDP p.c. Growth 0.0896*** 0.0899*** 0.0900*** 0.0891*** 0.0941*** 0.0929***
(0.0201) (0.0200) (0.0204) (0.0203) (0.0197) (0.0202)

World GDP p.c. Growth 0.753***
(0.0585)

First difference in
Harsh Drought Prevalence (W) -0.225*** -0.257*** -0.243*** -0.204*** -0.304***

(0.0532) (0.0525) (0.0521) (0.0529) (0.0611)
Max T ˝C above 35 (W) -0.168** -0.212*** -0.155** -0.173** -0.208**

(0.0670) (0.0663) (0.0630) (0.0673) (0.0916)
Mean T ˝C in [9; 12) 0.144*** 0.161***

(0.0377) (0.0384)
PPT Minimum (W) -0.191**

(0.0769)

Constant 1.220*** 1.222*** 1.221*** 1.223*** -1.090*** 1.515*** 1.119***
(0.0627) (0.0628) (0.0627) (0.0630) (0.205) (0.0618) (0.0504)

Observations 6,653 6,653 6,653 6,653 6,653 6,653 4644
Year fixed effects Yes Yes Yes Yes No Yes Yes
World GDP growth No No No No Yes No No
Country quadratic trends No No No No No Yes No
Balanced No No No No No No Yes
R-squared 0.267 0.265 0.264 0.263 0.253 0.360 0.259
Within R-squared 0.0975 0.0947 0.0934 0.0924 0.145 0.0278 0.0880

Notes: This is the full table corresponding to the main text summary Table 1. All regressions include country
fixed effects. The dependent variable is the first difference of log real GDP per capita expressed in constant 2015
USD. Climate variables are standardized and their definitions are detailed in appendix Table A.1. rW s indicates
population-weighted variables. Standard errors are clustered by country.
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Table A.3: Weather shocks on GDP per capita growth: robustness to additional controls

(A) (B) (C) (D) (E) (F) (G)

L.GDP p.c. Growth 0.215*** 0.207*** 0.207*** 0.213*** 0.205*** 0.179*** 0.193***
(0.0332) (0.0366) (0.0367) (0.0333) (0.0327) (0.0337) (0.0331)

L2.GDP p.c. Growth 0.0896*** 0.0866*** 0.0863*** 0.0879*** 0.0842*** 0.0742*** 0.0797**
(0.0201) (0.0212) (0.0215) (0.0196) (0.0303) (0.0247) (0.0338)

L3.GDP p.c. Growth 0.0431** 0.0431** 0.0368*
(0.0207) (0.0206) (0.0197)

L4.GDP p.c. Growth -0.00867 -0.00864 -0.00217
(0.0138) (0.0137) (0.0162)

Harsh Drought Prevalence rW s -0.225*** -0.217*** -0.196*** -0.226*** -0.222*** -0.256*** -0.236***
(0.0532) (0.0538) (0.0581) (0.0530) (0.0529) (0.0608) (0.0644)

Max T ˝C above 35 rW s -0.168** -0.160** -0.169** -0.170** -0.156** -0.189*** -0.107*
(0.0670) (0.0710) (0.0670) (0.0666) (0.0629) (0.0688) (0.0626)

Mean T ˝C in [9; 12) 0.144*** 0.124*** 0.216*** 0.143*** 0.134*** 0.146*** 0.154***
(0.0377) (0.0375) (0.0527) (0.0379) (0.0394) (0.0445) (0.0587)

L.Harsh Drought Prevalence rW s 0.0731 0.0875
(0.0547) (0.0651)

L2.Harsh Drought Prevalence rW s -0.0261 -0.0787
(0.0536) (0.0588)

L.Max T ˝C above 35 rW s -0.0167 0.0653
(0.0818) (0.0745)

L2.Max T ˝C above 35 rW s -0.00436 0.0375
(0.0605) (0.0517)

L.Mean T ˝C in [9; 12) 0.178** 0.0938
(0.0772) (0.0818)

L2.Mean T ˝C in [9; 12) 0.0539 0.0116
(0.0473) (0.0552)

D.Violent conflict indicator -0.888** -0.610*
(0.382) (0.356)

LD.Violent conflict indicator -0.955** -0.730
(0.394) (0.453)

L2D.Violent conflict indicator -1.264*** -0.704*
(0.382) (0.398)

D.Inflation (%) -0.0130 -0.00147
(0.0116) (0.00996)

LD.Inflation (%) -0.00781 0.00402
(0.0128) (0.0112)

L2D.Inflation (%) -0.000365 0.00479
(0.0103) (0.0101)

D.Log exchange rate -1.043*** -0.603**
(0.254) (0.271)

LD.Log exchange rate -0.121 -0.211
(0.177) (0.151)

L2D.Log exchange rate 0.104 0.0885
(0.132) (0.128)

D.Log terms of trade 5.805** 3.342
(2.248) (2.651)

LD.Log terms of trade 9.176*** 9.687***
(1.975) (2.141)

L2D.Log terms of trade 2.694 4.433**
(2.251) (2.152)

Observations 6,653 6253 6253 6,653 5,494 5,653 4,819

Notes: The dependent variable is GDP per capita growth. The violent conflict indicator is from the Uppsala Conflict
Dataset v23.1 (Gleditsch et al., 2002; Davies et al., 2023). Inflation and the exchange rate are from the World
Bank WDI dataset. The terms are trade are from (Gruss and Kebhaj, 2019). See additional notes in Table 1 in
the main text.
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Table A.4: Weather shocks on GDP per capita growth: robustness to estimation choices

(A) (B) (C) (D) (E)

Lag-1 GDP p.c. Growth 0.215*** 0.160* 0.138 0.0918 0.233***
(0.0332) (0.0825) (0.0857) (0.120) (0.0403)

Lag-2 GDP p.c. Growth 0.0896*** 0.0773*** 0.117*** 0.0223 0.115***
(0.0201) (0.0220) (0.0253) (0.0362) (0.0299)

Lag-3 GDP p.c. Growth 0.0755*** 0.102***
(0.0169) (0.0144)

Harsh Drought Prevalence rW s -0.225*** -0.182*** -0.248*** -0.239*** -0.229***
(0.0532) (0.0572) (0.0598) (0.0615) (0.0514)

Max T ˝C above 35 rW s -0.168** -0.172** -0.143* -0.129 -0.175**
(0.0670) (0.0733) (0.0807) (0.0794) (0.0605)

Mean T ˝C in [9; 12) 0.144*** 0.0709 0.117** 0.117** 0.129**
(0.0377) (0.0660) (0.0464) (0.0467) (0.0474)

Constant 0.0122*** 0.0127*** -0.0175**
(0.000627) (0.00139) (0.00740)

Observations 6,653 6,680 6,253 6,253 6,604

Arellano-Bond test for zero autocorrelation in first-differenced errors
p-values (H0: No autocorrelation)
Order 1 .0013 .0078
Order 2 .0519 .9915

Notes: The dependent variable is GDP per capita growth and all specifications include country and year fixed
effects. Column A refers to the same estimation as in the first column in Table 1 in the main text (see additional
notes there for more details). Column B shows the result for the same specification but without the exclusion of
outliers. Column C reports results from the Arellano-Bond GMM estimator. Results in column D are from the
Arellano–Bover/Blundell–Bond estimator with lagged dependent variables of order 4 or higher as instruments. The
bottom panel reports the results of Arellano-Bond tests. Rejecting the null hypothesis of no serial correlation in
the first-differenced errors at order zero does not imply model misspecification because the first-differenced errors
are serially correlated by assumption. Rejecting the null hypothesis of no serial correlation in the first-differenced
errors at an order greater than one implies model misspecification, but the hypothesis is accepted at the 5% level
in columns C and D. Column E reports the results obtained with the half-panel jackknife FE-TE estimator that is
robust to small size distortions as proposed by Chudik et al. (2016) and used in Kahn et al. (2021). Standard errors
in column A are clustered by country and column B-C-D are robust to unspecified heteroskedasticity.
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Table A.5: Estimation of the effect of climate on GDP growth: comparisons with the literature

Burke et al. (2015) Kahn et al. (2021)

(A) base (B) unchanged (C) augmented (D) base (E) unchanged (F) augmented

Lag-1 GDP p.c. Growth 0.0742* 0.0747* 0.0786* 0.234*** 0.234*** 0.236***
(0.0423) (0.0418) (0.0415) (0.0465) (0.0467) (0.0465)

Lag-2 GDP p.c. Growth -0.0159 -0.0162 -0.0150 0.145*** 0.145*** 0.145***
(0.0203) (0.0203) (0.0203) (0.0362) (0.0364) (0.0367)

Lag-3 GDP p.c. Growth 0.000686*** 0.000666*** 0.000643***
(0.000211) (0.000213) (0.000215)

Lag-4 GDP p.c. Growth -0.0000984 -0.0000797 -0.0000588
(0.000189) (0.000189) (0.000190)

Average Annual Temperature 0.00909*** 0.00792**
(0.00305) (0.00308)

– squared -0.000374*** -0.000276***
(0.0000865) (0.0000921)

Average Annual Precipitation 0.0000186* 0.00000275
(0.00000981) (0.00000904)

– squared -5.97e-09** -3.27e-09
(2.52e-09) (2.27e-09)

Harsh Drought Prevalence rW s -0.313*** -0.294***
(0.0777) (0.0654)

Max T ˝C above 35 rW s -0.200** -0.228***
(0.0979) (0.0694)

Mean T ˝C in [9; 12) 0.198*** 0.197***
(0.0503) (0.0593)

Temperature Deviations from Trend -0.0275 0.00543
(0.0264) (0.0272)

– first lag -0.0444 -0.0484
(0.0331) (0.0329)

– second lag -0.104*** -0.109***
(0.0396) (0.0392)

– third lag -0.132*** -0.128***
(0.0362) (0.0357)

– fourth lag -0.0526* -0.0511*
(0.0299) (0.0297)

Precipitation Deviations from Trend -0.0757 -0.0620
(0.0663) (0.0661)

– first lag -0.0707 -0.0493
(0.0730) (0.0727)

– second lag -0.0401 -0.0231
(0.0774) (0.0772)

– third lag -0.0448 -0.0377
(0.0756) (0.0751)

– fourth lag -0.0485 -0.0518
(0.0626) (0.0623)

pθ∆|T̃itpmq|
-0.581*** -0.536**

(0.217) (0.215)
pθ∆|P̃itpmq|

-0.451 -0.363

(0.419) (0.419)

Observations 4,214 4,214 4,214 4,500 4,500 4,500

Notes: pθ∆|T̃itpmq|
and pθ∆|P̃itpmq|

are the estimated long-term effects of temperature and precipitation deviations from

trend as calculated in Kahn et al. (2021). See additional notes in Table 2 in the main text.
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Table A.6: Additional estimates of macro-fiscal effects of selected climate variables

(A) (B) (C)
∆ lnRevenue ∆ lnExpenditure ∆ lnDebt

(p.p.) (p.p.) (p.p.)

Lag-1 dependent variable -0.0829** -0.0704** 0.146***
(0.0348) (0.0274) (0.0293)

Lag-2 dependent variable -0.0515* -0.0358 0.0390**
(0.0281) (0.0335) (0.0151)

First difference in

Harsh Drought Prevalence rW s 0.0230 0.0822 -0.224
(0.195) (0.178) (0.205)

Max T ˝C above 35 rW s -0.730** -0.152 -0.141
(0.287) (0.225) (0.216)

Mean T ˝C in [9; 12) 0.264** -0.0100 -0.0520
(0.118) (0.123) (0.205)

Lag-1 Longest Day Cold Wave rW s -0.368* 0.0439 0.172
(0.197) (0.210) (0.241)

Mean Wet Day PPT -0.351 -0.560*** 0.188
(0.240) (0.190) (0.264)

Lag-1 PPT Minimum 0.146 -0.0680 -0.677***
(0.179) (0.177) (0.209)

Constant 4.406*** 4.287*** 3.450***
(0.205) (0.197) (0.130)

Observations 3,890 3,890 3,890
R-squared 0.120 0.0733 0.201

Note: The dependent variables are indicated in the column titles and are expressed in percentage points. We use the

same three climate variables used for GDP growth and the first climate variables selected by the LASSO respectively

for government revenue, expenditure, and debt. All climate variables are standardized. rW s indicates population-

weighted variables. Controls include the first two lags of the dependent variable (reported in the first two rows), and

year and country fixed effects. Standard errors are clustered by country and reported in brackets.
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Figure A.1: Elastic Net climate variable selection impacting (GDP baseline FE specification)
(a) Variations of the BIC with ϕ (fixed λ “ 0.04) (b) Variations of the BIC with λ (fixed ϕ “ 0.80)

(c) Variations of the AIC with ϕ (fixed λ “ 0.03) (d) Variations of the AIC with λ (fixed ϕ “ 0.70)

(e) Variations of the out-of-sample within R2 with
ϕ (fixed λ “ 0.027)

(f) Variations of the out-of-sample within R2 with
λ (fixed ϕ “ 0.648)

Note: The figures show the results of implementing the EN for different penalty parameters α and λ. In each
graph, we fix one of these two parameters, setting it to its optimal value, and vary the other one. The red lines
show how the number of selected variables vary with each parameter. The various grey dashed lines show the
variation of different criteria with each parameter. The within R-squared is calculated on a sub-sample of countries
(evaluation set) based on coefficients estimated on the rest of countries (training set) as explained in the main text.
The estimated model has GDP per capita growth as the dependent variable and includes country and year effects.
The dots indicate the different selection outcomes given by the local optimum for each criteria respectively.
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B. ONLINE Appendix

B.1. Source Data

We use weather from the ERA5 dataset from 1979 to 2021.25 The original ERA5 dataset has hourly

data but we use data aggregated at daily level by Google Earth Engine (GEE).26 This includes daily

mean temperature in each day d and grid cell j, calculated using ERA5’s 24 measures per day (Tj,d), the

minimum of those 24 measures within a day (TNj,d), and the maximum of those 24 measures within a day

(TXj,d). Total daily precipitation (Pj,d) is calculated by summing all the hourly precipitation measures

within a day. From these daily grid-cell data points we construct all our variables.

Number of observations in the original databases. The resolution of ERA5 data is 0.25 degrees.

A global map has 180 degrees along the North-South dimension and 360 degrees along the West-East

dimension: the total number of cells is therefore equal to p180{0.25q ˆ p360{0.25q “ 1, 036, 800. The

percentage of Earth’s surface covered land, after excluding Antarctica and Greenland, is approximately

equal to 27%. This means that we use approximately 1,036,800 ˆ 0.27 = 279,936 cells on land. For each

grid and each day of the 41 years from 1979 to 2019 we have four weather data points (T , TN , TX,

and P ). This means that we start with approximately 279,936 ˆ 365 ˆ 41 ˆ 4 = 16,756,968,960 (« 17

billion) temperature and precipitation data points.

The Palmer Drought Severity Index (PDSI) is from Abatzoglou et al. (2018) and is accessed using GEE.27

PDSI data comes at monthly intervals with spatial resolution equal to 0.0416 degrees. This corresponds

to (180 / .0416) ˆ (360 / 0.0416) ˆ 0.27 = 10,110,022 cells on land excluding Antarctica and Greenland.

Summing over all months from January 1979 to December 2019 we have a total of 10,110,022 ˆ 12 ˆ 41

= 4,974,130,917 (« 5 billion) observations on PDSI from the Terra Climate data.

To sum up, we start with 21,715,195,392 (« 22 billion) data points on temperature, precipitation, and

the PDSI.

Merging datasets and zonal statistics. We merge the ERA5 and PDSI datasets into one single

geospatial dataset that uses the higher resolution of PDSI data of approximately 5 km ˆ 5 km at the

equator. This dataset is projected on a global map of countries to calculate zonal statistics at country

level.28 The whole process is managed using Google Earth Engine and delivers a total of 9,621,976 («

10 million) country-matched grid cells for each one of our five core climate variables (Tj,d, TNj,d, TXj,d,

25https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=over

view
26https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_DAILY#description
27https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE#ban

ds
28Zonal statistics are operations that calculate statistics of cell values of a dataset (raster) within boundaries

defined by another dataset.
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Pj,d, and PDSIj,d). Each grid cell has daily data for 41 years. This means we develop our full set of

climate variables using 580,705,495,552 (« 600 billion) data points.

Weighted variables. The resolution for the population data is « 1 km ˆ 1 km at the equator,29,30 and

hence for the weighted data we use 1 km ˆ 1 km grid cells during zonal statistics. By mixing population

and weather data we obtain 25 additional points for each grid cell of the raw weather data. This adds

25 ˆ 580,705,495,552 = 14,517,637,388,800 (« 15 trillion) data points to our dataset for zonal statistics.

B.2. Definition of weather variables

This Section describes all the weather variables we construct from raw precipitation and temperature

data. We start by an overview of weather variables, then give a brief presentation of mathematical nota-

tions and concepts, and finally provide the full list of the variables we construct and their mathematical

definitions in table A.1.

Temperature variables. For each day in a year and country, we calculate country-wide averages of

daily average, minimum, and maximum temperature (respectively Td, TNd, and TXd) from daily grid

level data. We aggregate average daily temperatures to get annual average temperature (T ), the variance

of daily temperature (TV ar). We calculate the average diurnal temperature range (DTR) from minimum

and maximum daily temperatures. Using the 10th and 90th percentiles of the 1979-2019 distribution of

TNd and TXd in a 5-day window centered on each day of the year, we calculate the number of cold

nights (CN10), cold days (CD10), warm nights (WN90) and warm days (WD90), to characterize cold

and heat extremes using relative thresholds.

To account for impacts from extended exposure to temperature extremes, we build variables to capture

heatwaves and coldwaves based on the climate literature. We follow Kim et al. (2020) and we define cold

(warm) spell duration (CSD, WSD) as the number of days in which TNd (TXd) is below (above) the

10th (90th) percentile of the 1979-2019 distribution in a 5-day window centered on each day, for at least

six consecutive days. We follow Perkins and Alexander (2013) to define eight additional indicators of day

(night) heat waves based on exceeding the 90th percentile of the 1979-2019 distribution of TXd (TNd)

in a 15-day window centered on each day, for at least three consecutive days. We count the number

of days with day (night) heat wave, the length of the longest day (night) heatwave, the number of day

(night) heatwaves during a year, and the average maximum (minimum) temperature during day (night)

heatwaves. Similarly, we use the 10th percentile of the distribution of TXd and TNd to measure the

characteristics of day and night cold waves.

We construct country averages of grid-level annual minimum of minimum daily temperature (TNn) and

of grid-level maximum of maximum daily temperature (TXx), both used in the climate literature.

29https://doi.org/10.7927/H4F47M65
30https://developers.google.com/earth-engine/datasets/catalog/CIESIN_GPWv411_GPW_UNWPP-Adjus

ted_Population_Count
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We also define another set of extreme temperature variables using absolute temperature thresholds based

on the climate literature (e.g., IPCC, 2021a). With absolute temperature thresholds, using the highest

possible level of spatial resolution is essential to avoid missing the potentially harmful events that can

get averaged out over large areas. For example, if two grid cells have maximum daily temperature equal

to, respectively, 33 ˝C and 36 ˝C, their average is equal to 34.5 ˝C, lower than the frequently used 35 ˝C

threshold. By first averaging and then checking if the threshold is crossed, we would record zero extreme

events, while temperature in 50% of the grid cells exceeds the threshold. The same does not apply to

extremes measured using relative thresholds.

Therefore, when we use absolute thresholds, we sum the number of times a threshold is crossed in each

grid cell and in each day, across all days and grid cells in a country, and then divide that number by

the total number of grid-day observations (J ˆ 365). We do so to find the share of grid-days with frost

(minimum daily temperature below 0˝C – TN0), with maximum temperature above 35 ˝C (TX35) and

above 40˝C (TX40).

Finally, to capture potential non-linear effects of temperature on macroeconomic variables, we divide the

distribution of temperature into 3 ˝C-wide intervals and we measure the share of grid-day observations in

each interval (e.g., Schlenker and Roberts, 2009). For example, Figure B.1 illustrates the calculation of

the share of grid-days that experiences temperature levels between x1 and x2 degrees Celsius. By using 3
˝C wide intervals we aim to balance flexibility in modeling the temperature response function and avoid-

ing multicollinearity problems that would arise from using narrower temperature intervals (Mérel and

Gammans, 2021). One of the intervals is omitted in our estimation process to avoid perfect collinearity

among all interval indicators. As very low and very high average daily temperatures are rare, all the days

with average temperature below -9 ˝C and at or above 30 ˝C are grouped in two terminal intervals.

Precipitation (rain or snow) variables. We start by calculating the average of total daily pre-

cipitation in each country across all grid cells (Pd). We use this variable to construct annual average

precipitation (P ) and the annual variance of daily precipitation (PV ar) for every country. Following the

climate literature, we focus on days that have more than 1 mm of precipitation, which are called “wet

days”. We calculate the number of wet days (W ), average daily precipitation in wet days (PWA), and

wet days precipitation variance (PWV ar). We calculate total precipitation in very wet (PW95T ) and

extremely wet days (PW99T ) using the 95th and 99th percentiles of the distribution of wet days over all

days and years from 1979 to 2019.

We build several variables to capture extended wet and dry periods. We count the largest number of

consecutive dry days (days with precipitation less than 1 mm — CDD), the largest number of consecu-

tive wet days (CWD) and total precipitation during the longest wet days period (PCWD). To focus on

extreme conditions, we count the number of consecutive very (PC95WD) and extremely (C99WD) wet

days in the longest periods with daily precipitation above the 95th and 99th percentiles of the distribution,
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Figure B.1: Computing the share of grid-days with weather conditions in a specific interval

Notes: This figure illustrates the calculation methodology for “Share of Grid-Days with Mean Temperature in the
interval rx1, x2q” (Mean T ˝C in rx1, x2q — TSrx1,x2q) for a given day d in any country j. We also zoom on
Algeria. The grid cells colored in red represent the locations where x1 ď Tj,d ă x2 and grid cells colored in gray
represent the locations where Tj,d (average daily temperature in country j on day d) is outside of this range. For
our study, we later obtain country-year measures by averaging daily percentages over the 365 days of a year. Note
that the grid cells are pictured as much bigger than they are in the original dataset for visualization purposes. For
example, there are 50 grid cells belonging to Algeria in this figure. However, there are more than 105 thousand grid
cells in Algeria in the dataset.

respectively. Similarly, we calculate total precipitation in consecutive very (PC95W ) and extremely wet

days (PC99WD).

To capture intense precipitation that may cause floods, which are among the most destructive climate

disasters, we use the maximum amount in a year of rainfall in 1-day (PX1) or 5-day (PX5) intervals. To

capture extreme precipitation at the local level, we use total monthly precipitation in each grid cell and

we calculate the country average of maximum (PXp1Monthq) and minimum (PNp1Monthq) monthly

precipitation.

As for temperature, precipitation extremes can also be characterized using absolute thresholds but this

requires calculations at the grid level. We calculate the length of the longest dry spell (LLDS) in a

country as the uninterrupted series of days in which a minimum percent of the country area has daily

total precipitation less than 1 mm (dry day). We use four thresholds to identify dry spells and consider

spells affecting 50%, 65%, 80% and 95% of a country area. Similarly to what we do with temperature

intervals, we calculate the share of total grid-days with total precipitation in four intervals: less than 1

mm, from 1 mm to 10 mm, from 10 mm to 20 mm, and above 20 mm. The maximum extent of heavy

(MaxPą10) and very heavy (MaxPą20) precipitation is equal to the maximum daily share of the country
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with precipitation respectively greater than 10 mm and 20 mm. To capture deviations from conditions

with balanced level of precipitation across time and space, we develop an indicator that measures the

absolute deviation from having 50% of the grid-days observations of precipitation between 1 and 10 mm

(BP1 10p0.5q).

Wetness and drought variables. Finally, we use the Palmer Drought Severity Index (PDSI)

(Palmer, 1965) to introduce a measure of dry and wet periods that combines temperature and pre-

cipitation data to estimate cumulative deviations in soil moisture from normal conditions (Dai et al.,

2004; Abatzoglou et al., 2018; Lai et al., 2020).31 The PDSI ranges from -10 to +10, but values below -4

and above +4 are rare. We build variables measuring the share of total grid-months subject to extreme

droughts (PDSI ă ´4), extreme and severe droughts (PDSI ă ´3), periods with extreme moisture (PDSI

ą 4), and periods with very high and extreme moisture (PDSI ą 3). For each of these four categories

and in every country, we also build variables reflecting the maximum extent of these events, that is the

share of affected grid-cells in the month where the share is at its maximum.

Mathematical notations and concepts. We use d to denote calendar days, months with m, and

j “ 1, . . . , J to denote grid cells in every country. For ease of notation, we do not index variables by

country and year. In each year there are 12 months and for ease of notation we assume each year has the

same number of days.

We use Iverson brackets in the definition of many variables. Iverson brackets map any statement inside

brackets into a function that takes the value of the variables for which the statement is true, and take

the value zero otherwise.32 It is denoted by putting the statement inside square brackets:

rXs “

$

&

%

1 if X is true;

0 otherwise.

Thus, to count days in which a certain condition X is met we write:
ř

d rXs.

Some variables capture different percentiles of the long-term distribution of daily mean temperature and

daily precipitation. We use the whole time horizon of our dataset for these distributions, from 1979 to

2019. This is represents a 41-year time window that is well-suited to capture extreme realizations of

temperature and precipitation.

For daily precipitation, we use all days of the calendar year as there are no obvious seasonal patterns

that apply to all countries. For temperature, there is a more marked seasonal cycle in most countries

31Data downloaded from Google Earth Engine. See http://www.climatologylab.org/terraclimate.html

and https://developers.google.com/earth-engine/datasets/catalog/IDAHO_EPSCOR_TERRACLIMATE for a
detailed description of the datasets.

32Donald Knuth, “Two Notes on Notation” American Mathematical Monthly, Volume 99, Number 5, May 1992,
pp. 403–422.
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and deviations from normal conditions are more clearly dependent on the time of the year temperature

is observed. For this reason, the distribution of temperature is restricted to moving windows centered

on the day of interest. We use 5-day and 15-day windows following the literature Kim et al. (2020);

Perkins and Alexander (2013). For example, consider August 16, 2000. To check whether precipitation

is extreme, we compare daily precipitation with the distribution of precipitation over all days from 1979

to 2019. To check if temperature is extreme, we restrict the distribution of daily mean temperature to

August 14, 15, 16, 17, and 18 (with a 5-day window) from 1979 to 2019.

B.3. Summary Statistics

Between and within variance. Our empirical and identification approach relies on inter-annual

variation within country. Therefore, we use a standard approach to decompose the variance of variables

into between and within components.

For any variable x, the variance across N countries and over T years can be decomposed by introduc-

ing country averages sxi. The variance is equal to
ř

i,t
pxi,t´sxq

2

NT “
ř

i,t
pxi,t´sxiq

2

NT ` 2
ř

i,t
pxi,t´sxiq

T
psxi´sxq

N `
ř

i,t
psxi´sxq

2

NT . It simplifies to
ř

i,t
pxi,t´sxq

2

NT “
ř

i,t
pxi,t´sxiq

2

NT `
ř

i
psxi´sxq

2

N where the terms are respectively

the within and between variance. We take the square roots of each component to obtain between- and

within-country standard deviations.

The between standard deviation measures variation of average country weather around the global mean.

The within standard deviation measures the average deviation from country averages.

Trends in weather variables. Table B.1 reports tests of trends in the levels of the weather variables.

For each variable and each country we estimate a linear regression of the form wt “ α`βt`ut, where wt is

the value taken by the weather variable in year t, ut is a random component and β is the country-specific

trend coefficient.

Column A reports the average β across all countries. Our results are not truly indicative of global trends,

because we use country-level observations instead of area-weighted averages. For an accurate assessment

of climate trends, it is important to rely on conclusions from climate science (IPCC, 2021b). However,

the positive trend for average annual temperature is equal to 0.03 ˝C per year, a value remarkably in line

with the average decadal increase of temperature equal to 0.3 ˝C found by the IPCC WG I.

Column B shows the percentage of countries for which the trend is significantly different from zero at

the 5 percent confidence level. We use this percentage value to rank variables in decreasing order. Most

of the variables built using temperature show a significant trend consistent with global warming in the

majority of countries, and in some cases in virtually all countries. Variables built using precipitation do

not generally show a trend that is significant for the majority of countries and in most cases trends are

not significant for more than 2/3 of the countries.
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Our model specification (see equation (2)) effectively removes trends in climate variables only if the trend

is time invariant. To assess weather trends change over time, we conduct a test for a structural trend

break with unknown break date in the time series of each climate variable, separately in each country.

In column C we report the percentage of countries with both a significant trend and a significant break

in the trend.33 There is evidence of a trend with a structural break for more than 50 percent of the

countries only for few variables. This suggests that our method, albeit imperfectly, helps to remove

trends in weather variables.

Table B.1: Trends in weather variables

(A) (B) (C)

Average trend Significant trend Significant trend and break

(% of countries) (% of countries)

Mean Temperature 0.0292 99% 50%

# of Warm Nights 1.4904 97% 71%

# of Warm Days 1.3516 96% 62%

# of Cold Days -1.0564 95% 51%

# of Cold Nights -1.2086 94% 64%

# of Day Cold Waves -0.0858 90% 46%

# of Night Heat Waves 0.1175 89% 65%

Cold Wave Days -0.5272 89% 53%

Heat Wave Nights 0.7510 89% 62%

# of Day Heat Waves 0.1094 88% 57%

Heat Wave Days 0.6824 88% 60%

Cold Wave Nights -0.5965 87% 57%

# of Night Cold Waves -0.0979 87% 56%

Longest Day Heat Wave 0.1574 81% 47%

Mean T ˝C in [27; 30) 0.0018 80% 52%

Longest Night Heat Wave 0.1737 78% 49%

Max T ˝C above 35 0.0008 76% 42%

Day T ˝C Maximum 0.0322 75% 42%

Warm Spell Duration 0.4343 74% 53%

Longest Night Cold Wave -0.1439 73% 54%

Longest Day Cold Wave -0.1313 72% 42%

Cold Spell Duration -0.3679 72% 56%

Mean T ˝C in [24; 27) -0.0008 70% 54%

Frost prevalence -0.0009 69% 33%

Night Heat Wave T ˝C 0.0785 67% 54%

Mean T ˝C in [21; 24) -0.0006 66% 43%

Mean T ˝C above 30 0.0006 66% 35%

Day Heat Wave T ˝C 0.0748 58% 54%

Max T ˝C above 40 0.0003 58% 36%

Mean T ˝C in [-6; -3) -0.0002 58% 39%

Diurnal T ˝C Range 0.0051 53% 68%

Mean T ˝C in [15; 18) -0.0001 53% 36%

Mean T ˝C in [18; 21) -0.0001 52% 36%

Mean T ˝C in [-3; 0) -0.0002 48% 34%

Night T ˝C Minimum 0.0266 48% 39%

Continued on next page

33More precisely, we test if the null hypothesis of no structural break can be rejected at the 95 percent confidence
level using a supremum Wald test which is the least restrictive among those commonly used.
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Table B.1 (Continued): trends in weather variables

Mean T ˝C in [-9; -6) -0.0002 45% 35%

Mean T ˝C in [0; 3) -0.0002 44% 30%

Mean T ˝C in [12; 15) -0.0001 41% 41%

Balanced PPT Indicator 0.0003 38% 63%

Mean T ˝C in [9; 12) -0.0001 37% 37%

Night Cold Wave T ˝C 0.0039 36% 42%

Drought Intensity 0.0039 35% 75%

Less than 1 mm PPT 0.0006 35% 65%

Mean T ˝C in [3; 6) -0.0001 35% 32%

# of Wet Days -0.2077 34% 59%

Mean T ˝C in [6; 9) 0.0000 34% 33%

Day Cold Wave T ˝C 0.0155 32% 46%

Harsh Drought Intensity 0.0037 31% 63%

Drought Prevalence 0.0026 29% 61%

Above 20 mm PPT 0.0001 28% 50%

Very Wet Day PPT 1.6213 28% 46%

Wetness Intensity 0.0008 27% 73%

Precipitation Variance 0.1271 27% 42%

10 to 20 mm PPT -0.0001 26% 57%

Harsh Drought Prevalence 0.0019 26% 48%

High Wetness Intensity 0.0016 26% 59%

Wet Day PPT Variance 0.1818 26% 38%

Wet Conditions 0.0011 25% 59%

Mean Wet Day PPT 0.0049 24% 48%

PPT Maximum 0.0003 24% 44%

Mean Precipitation 0.0008 23% 58%

Cont’d Wet Days -0.1937 21% 41%

Very Wet Conditions 0.0012 21% 43%

Longest Dry Spell (.80) 0.0541 20% 40%

Cont’d Dry Days 0.0774 19% 35%

Longest Dry Spell (.65) 0.1109 19% 41%

Extremely Wet Day PPT 0.7905 19% 37%

1-Day PPT Maximum 0.1054 18% 37%

Cont’d Wet Day PPT -0.6595 18% 37%

5-Day PPT Maximum 0.1418 17% 34%

PPT Minimum 0.0000 17% 31%

Longest Dry Spell (.95) 0.0241 15% 39%

Extreme PPT Maximum 0.0008 15% 36%

Longest Dry Spell (.5) 0.1123 15% 40%

Cont’d Heavy PPT 0.1693 14% 32%

Cont’d Very Wet Day PPT 0.0034 12% 32%

Temperature Variance 0.0046 12% 38%

Heavy PPT Maximum 0.0000 8% 33%

Cont’d Extreme PPT 0.1885 7% 18%

Cont’d Extra Wet Day PPT 0.0046 7% 20%

Macroeconomic variables. Summary statistics for the macro-fiscal variables used in our analysis

are shown in Table B.2. The Table displays separately the growth rate of GDP per capita in the larger

sample used for the analysis of weather impacts on GDP growth, and the growth rate of GDP per capita

in the smaller sample used for the analysis of fiscal impacts.

Correlation analysis. The analysis of raw correlations between GDP growth and the explanatory

variables selected by the LASSO for our main specification is displayed in Table B.4. Correlations be-
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Table B.2: Summary statistics of macro-fiscal variables

Summary Statistics of First Differences N Mean St. Dev. St. Dev. Between St. Dev. Within

∆ lnpGDP {POP q in GDP Growth Sample (p.c.) 6,653 1.726% 4.63% 1.77% 4.33%
∆ lnpGDP {POP q in Fiscal Sample (p.c.) 3,890 2.005% 3.85% 1.55% 3.56%
∆ Revenue-to-GDP (p.p.) 3,890 0.064% 2.90% 0.71% 2.86%
∆ Expenditure-to-GDP (p.p.) 3,890 0.045% 3.61% 0.92% 3.56%
∆ Balance-to-GDP (p.p.) 3,890 0.019% 4.12% 0.71% 4.09%
∆ Debt-to-GDP (p.p.) 3,890 0.177% 8.1% 1.96% 7.9%
∆ Revenue (p.c.) 3,890 3.873% 11.6% 2.50% 11.4%
∆ Expenditure (p.c.) 3,890 3.867% 10.8% 2.51% 10.6%
∆ Debt (p.c.) 3,890 4.221% 16.3% 4.91% 15.8%

Notes: GDP per capita is measured by the difference of log GDP capita. Government revenue, Government expen-
diture and Government Debt growth are measured by the difference of log variables. All fiscal variables are measured
as percentage of GDP and first differences are measured in percentage points.

Table B.3: Summary statistics of climate variables

Summary Statistics of First Differences Mean St. Dev. Between St. Dev. Within
Harsh Drought Prevalence (W) (PDSI ă ´4) 0.0050 0.0097 0.1741
Max T above 35 ˝C (W) (TX35) 0.0006 0.0011 0.0205
Mean T in [9; 12) ˝C (TS9 12) 0.0000 0.0007 0.0159
Longest Day Cold Wave (LDCW ) -0.1130 0.2584 5.903
Mean Wet Day PPT (PWA) 0.0025 0.0531 0.9897
PPT Minimum (PNM) 0.0000 0.0007 0.0161

Notes: Summary statistics of first differences of all weather variables used for either GDP analysis, including
robustness tests, or for analysis of macro-fiscal outcomes. (W) indicates population-weighted variables. The sample
of the baseline specification is used for all climate variables.
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tween GDP growth and first differences of weather variables are generally small. Correlation is negative

for Max T ˝C above 35 and Harsh Drought Prevalence, and positive for Mean T ˝C in [9; 12). The same

relationships are confirmed in our baseline regression analysis (see Table 1).

We also display the correlation of GDP growth with both average annual temperature and annual precip-

itation even if these two variables are not selected by the LASSO because they are the only two weather

variables typically used in the literature. The correlation between GDP growth and both temperature

and precipitation is very low and much lower than for our selected weather variables. This is preliminary

evidence that the literature may miss a large fraction of climate induced variation in GDP growth. Inter-

estingly, the largest correlations among climate variables are between Average Temperature and Harsh

Drought Prevalence and between Mean Temperature and Max T ˝C above 35, but the LASSO always

selects Harsh Drought Prevalence and Max T ˝C above 35 instead of Mean Temperature to explain GDP

growth.

Table B.4: Correlation Matrix Between Baseline Variables
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Lag(1) of GDP Growth 0.366
Lag(2) of GDP Growth 0.248 0.281
Harsh Drought Prevalence (W) (PDSI ă ´4) -0.058 0.025 0.012
Max T above 35 ˝C (W) (TX35) -0.040 0.016 0.021 0.180
Mean T in [9; 12) ˝C (TS9 12) 0.040 -0.016 0.014 -0.032 -0.033
Average T (T ) -0.015 0.020 -0.001 0.156 0.362 -0.053
Mean Precipitation (P ) 0.014 -0.006 -0.002 -0.196 -0.145 0.081 -0.087

Notes: These correlations are computed using first differences using the baseline regression sample. (W) indicates
population-weighted variables.
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Table B.5: Summary Statistics for Sub-Groups

Mean St. Dev. St. Dev. Mean St. Dev. St. Dev.

Between Within Between Within

Hot (N=3,315) Cold (N=3,338)

∆ GDP p.c. 1.38 1.85 4.44 2.07 1.59 4.22

Harsh Drought Prevalence (W) (PDSI ă ´4) 0.0032 0.0079 0.1668 0.0068 0.0108 0.1811

Max T above 35 ˝C (W) (TX35) 0.0008 0.0014 0.0257 0.0004 0.0007 0.0137

Mean T in [9; 12) ˝C (TS9 12) -0.00006 0.0003 0.0041 0.0002 0.0009 0.0220

Agricultural (N=3,119) Non Agricultural (N=3,107)

∆ GDP p.c. 1.71 1.77 4.55 1.75 1.46 3.89

Harsh Drought Prevalence (W) (PDSI ă ´4) 0.0043 0.0085 0.1833 0.0055 0.0091 0.1632

Max T above 35 ˝C (W) (TX35) 0.0009 0.0011 0.0257 0.0004 0.0008 0.0140

Mean T in [9; 12) ˝C (TS9 12) 0.00003 0.0005 0.0103 0.0001 0.0008 0.0193

Agricultural Hot (N=1,785) Agricultural Cold (N=1,334)

∆ GDP p.c. 1.37 1.64 4.10 2.16 1.84 5.08

Harsh Drought Prevalence (W) (PDSI ă ´4) 0.0025 0.0062 0.1803 0.0067 0.0101 0.1872

Max T above 35 ˝C (W) (TX35) 0.0011 0.0012 0.0310 0.0006 0.0009 0.0160

Mean T in [9; 12) ˝C (TS9 12) -0.0003 0.0001 0.0033 0.0001 0.0007 0.0153

Rich (N=3,936) Poor (N=2,717)

∆ GDP p.c. 1.95 1.77 4.27 1.41 1.75 4.41

Harsh Drought Prevalence (W) (PDSI ă ´4) 0.0055 0.0102 0.1697 0.0042 0.0088 0.1803

Max T above 35 ˝C (W) (TX35) 0.0004 0.0008 0.0141 0.0010 0.0014 0.0273

Mean T in [9; 12) ˝C (TS9 12) 0.0001 0.0009 0.0194 0.0000 0.0002 0.0083

EAP (N=1,013) ECA (N=1,632)

∆ GDP p.c. 2.42 2.23 3.89 2.31 1.48 4.49

Harsh Drought Prevalence (W) (PDSI ă ´4) 0.0017 0.0060 0.1683 0.0100 0.0112 0.1892

Max T above 35 ˝C (W) (TX35) 0.0006 0.0014 0.0240 0.0002 0.0004 0.0089

Mean T in [9; 12) ˝C (TS9 12) -0.00004 0.0001 0.0054 0.0004 0.0011 0.0283

MENA (N=620) SSA (N=1,656)

∆ GDP p.c. 0.97 1.86 5.16 1.07 1.52 4.66

Harsh Drought Prevalence (W) (PDSI ă ´4) 0.0003 0.0064 0.1961 0.0048 0.0096 0.1924

Max T above 35 ˝C (W) (TX35) 0.0011 0.0018 0.0246 0.0010 0.0012 0.0285

Mean T in [9; 12) ˝C (TS9 12) -0.0003 0.0009 0.0196 -0.0001 0.0003 0.0052

LAC (N=1,372) Base (N=6,550)

∆ GDP p.c. 1.36 1.47 3.87 1.73 1.77 4.33

Harsh Drought Prevalence (W) (PDSI ă ´4) 0.0056 0.0086 0.1388 0.0050 0.0097 0.1741

Max T above 35 ˝C (W) (TX35) 0.0005 0.0009 0.0122 0.0006 0.0011 0.0205

Mean T in [9; 12) ˝C (TS9 12) -0.00002 0.0001 0.0056 0.0000 0.0007 0.0159

High Democracy (N=3,895) Low Democracy (N=2,753)

∆ GDP p.c. 1.92 2.13 3.47 1.45 2.61 5.12

Harsh Drought Prevalence (W) (PDSI ă ´4) 0.0049 0.0180 0.1723 0.0049 0.0193 0.1758

Max T above 35 ˝C (W) (TX35) 0.0005 0.0031 0.0148 0.0008 0.0019 0.0265

Mean T in [9; 12) ˝C (TS9 12) 0.00006 0.0011 0.0186 0.0001 0.0013 0.0109

Continued on next page
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Table B.5 (Continued): Summary Statistics for Sub-Groups

High Democracy and Poor (N=950) Low Democracy and Poor (N=1,766)

∆ GDP p.c. 1.87 1.57 3.46 1.15 2.41 4.73

Harsh Drought Prevalence (W) (PDSI ă ´4) 0.0026 0.0208 0.1785 0.0051 0.0148 0.1809

Max T above 35 ˝C (W) (TX35) 0.0013 0.0049 0.0232 0.0008 0.0021 0.0292

Mean T in [9; 12) ˝C (TS9 12) -0.00002 0.0009 0.0054 -0.00003 0.0004 0.0096

1979-1999 (N=2,762) 2000-2019 (N=3,891)

∆ GDP p.c. 1.16 2.71 4.63 2.13 1.94 3.68

Harsh Drought Prevalence (W) (PDSI ă ´4) 0.0034 0.0388 0.1596 0.0061 0.0162 0.1827

Max T above 35 ˝C (W) (TX35) 0.0002 0.0027 0.0224 0.0009 0.0020 0.0190

Mean T in [9; 12) ˝C (TS9 12) -0.00004 0.0029 0.0138 0.0001 0.0007 0.0171

Note: Summary statistics of first difference of weather variables and GDP growth in percentage. Coefficients of
weather variables are reported in Figure 5 and groups are described in the Notes to the Figure.
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B.4. Additional Result Tables

Table B.6: Optimal LASSO selection of variables affecting GDP per capita growth under
different fit criteria (baseline FE specification)

BIC AIC OOS-Countries-R2 OOS-Observations-R2

Selected variables
Lag-1 GDP p.c.
growth, Lag-2
GDP p.c. growth,
Harsh Drought
PrevalencerW s,
Max T ˝C above
35rW s, Mean T ˝C
in [9,12)

Lag-1 GDP p.c. growth, Lag-
2 GDP p.c. growth, Harsh
Drought PrevalencerW s, Max
T ˝C above 35rW s, Mean T
˝C in [9,12), Longest Night
Heat WaverW s, Lag-1 Mean
T ˝C in [0,3)rW s, Lag-1 Cold
Spell Duration, Lag-2 Mean
T ˝C in [3,6)rW s, Lag-2 Cold
Wave Days, Longest Night
Cold WaverW s, 1-Day PPT
Maximum, Drought Intensity,
Lag-1 PPT MinimumrW s,
Lag-1 10 to 20 mm PPT,
Lag-1 Day T ˝C Maxi-
mum, Lag-2 Balanced PPT
Indicator, Lag-2 Mean
T ˝C in [3,6), Cont’d
Heavy PPTrW s, Heavy
PPT MaximumrW s, Longest
Dry Spell (.80)rW s, Lag-1
Mean T ˝C in [24,27)rW s,
PPT MinimumrW s, PPT
MaximumrW s, Cont’d Ex-
treme PPT, Lag-1 Cont’d
Wet DaysrW s, Lag-1 Harsh
Drought PrevalencerW s,
Lag-1 Longest Dry Spell
(.65)rW s, Lag-2 Day Heat-
wave T ˝CrW s, Lag-2 Longest
Dry Spell (.80)rW s, Lag-
2 Very Wet Conditions
PrevalencerW s, Lag-2 Mean
T ˝C in [0,3)rW s, Lag-2
Mean T ˝C in [3,6)rW s, Lag-2
Longest Dry Spell (.95),
Lag-2 Longest Dry Spell (.5),
Lag-2 Mean T ˝C in [21,24)

Lag-1 GDP p.c.
growth, Lag-2
GDP p.c. growth,
Harsh Drought
PrevalencerW s,
Max T ˝C above
35rW s, Mean
T ˝C in [9,12),
Longest Night
Heat WaverW s,
Lag-1 Mean T
˝C in [0,3)rW s,
Lag-1 Cold Spell
Duration, Lag-2
Mean T ˝C in
[3,6)rW s, Lag-2
Cold Wave Days,
Longest Night
Cold WaverW s,
1-Day PPT Maxi-
mum, Drought In-
tensity, Lag-1 PPT
MinimumrW s,
Lag-1 10 to 20 mm
PPT, Lag-1 Day
T ˝C Maximum,
Lag-2 Balanced
PPT Indicator,
Lag-2 Mean T ˝C
in [3,6)

Lag-1 GDP p.c.
growth, Lag-2
GDP p.c. growth,
Harsh Drought
PrevalencerW s,
Max T ˝C above
35rW s, Mean
T ˝C in [9,12),
Longest Night
Heat WaverW s,
Lag-1 Mean T
˝C in [0,3)rW s,
Lag-1 Cold Spell
Duration, Lag-2
Mean T ˝C in
[3,6)rW s, Lag-2
Cold Wave Days,
Longest Night
Cold WaverW s,
1-Day PPT Maxi-
mum, Drought In-
tensity, Lag-1 PPT
MinimumrW s,
Lag-1 10 to 20 mm
PPT, Lag-1 Day
T ˝C Maximum,
Lag-2 Balanced
PPT Indicator,
Lag-2 Mean T ˝C
in [3,6)

Number of Selected Variables 5 36 18 18
Optimal Penalty Weight (λ) .0328 .0139 .019 .019

Notes: This table shows some results of the implementation of the LASSO to select the climate variables that are best to explain
GDP per capita variations after accounting for country and year fixed effects. Each column corresponds to a different fit criteria and
refers to the outcomes of implementing the LASSO after setting λ to optimize that specific fit criteria. For each column, the second
row shows the list of the climate variables selected by the LASSO. The optimal value of λ is presented in the last row.
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Table B.7: Optimal EN selection of variables affecting GDP per capita growth under different fit
criteria (baseline FE specification)

BIC AIC OOS-Countries-R2 OOS-Observations-R2

Selected variables
Lag-1 GDP p.c.
growth, Lag-2
GDP p.c. growth,
Harsh Drought
PrevalencerW s,
Max T ˝C above
35rW s, Mean T ˝C
in [9,12)

Lag-1 GDP p.c.
growth, Lag-2
GDP p.c. growth,
Harsh Drought
PrevalencerW s,
Max T ˝C above
35rW s, Mean
T ˝C in [9,12),
Longest Night
Heat WaverW s,
Drought Intensity,
Lag-1 Mean T
˝C in [0,3)rW s,
Lag-1 Cold Spell
Duration, Lag-2
Mean T ˝C in
[3,6)rW s, Lag-2
Cold Wave Days

Lag-1 GDP p.c.
growth, Lag-2
GDP p.c. growth,
Harsh Drought
PrevalencerW s,
Max T ˝C above
35rW s, Mean
T ˝C in [9,12),
Longest Night
Heat WaverW s,
Longest Night
Cold WaverW s,
Drought Intensity,
Cont’d Heavy
PPTrW s, 1-day
PPT Maximum,
Lag-1 Mean T ˝C
in [0,3)rW s, Lag-1
Cold Spell Dura-
tion, Lag-1 PPT
MinimumrW s,
Lag-1 10 to 20 mm
PPT, Lag-1 Day
T ˝C Maximum,
Lag-2 Mean T ˝C
in [3,6)rW s, Lag-2
Cold Wave Days,
Lag-2 Balanced
PPT Indicator,
Lag-2 Mean T
˝C in [3,6), Lag-2
Mean T ˝C in
[21,24)

Lag-1 GDP p.c. growth, Lag-
2 GDP p.c. growth, Harsh
Drought PrevalencerW s, Max
T ˝C above 35rW s, Mean T
˝C in [9,12), Drought Intensity,
Cont’d Heavy PPTrW s, Longest
Night Heat WaverW s, Longest
Night Cold WaverW s, Heavy
PPT MaximumrW s, Longest
Dry SpellrW s, Mean T ˝C in
[24,27)rW s, Mean T ˝C above
30rW s, PPT MaximumrW s,
PPT MinimumrW s, 1-day PPT
Maximum, Very Wet Day
PPT, Cont’d Extreme PPT,
Mean T ˝C in [6,9), Mean T
˝C in [18,21), Lag-1 Mean T
˝C in [0,3)rW s, Lag-1 Cold
Spell Duration, Lag-1 Wet Day
PPT Variance, Lag-1 Cont’d
Wet DaysrW s, Lag-1 Harsh
Drought PrevalencerW s, Lag-1
PPT MinimumrW s, Lag-1 10
to 20 mm PPT, Lag-1 Longest
Dry Spell (.65), Lag-1 Mean
T ˝C in [0,3), Lag-1 Mean T
˝C in [9,12), Lag-1 Day T ˝C
Maximum, Lag-2 Mean T ˝C
in [3,6)rW s, Lag-2 Cold Wave
Days, Lag-2 Day Heat Wave T
˝CrW s, Lag-2 # of Night Cold
WavesrW s, Lag-2 Longest Dry
Spell (.80)rW s, Lag-2 High Wet-
ness IntensityrW s, Lag-2 Very
Wet Conditions PrevalencerW s,
Lag-2 Mean T ˝C in [0,3)rW s,
Lag-2 Mean T ˝C in [21,24)rW s,
Lag-2 Balanced PPT Indicator,
Lag-2 Longest Dry Spell (.95),
Lag-2 Longest Dry Spell (.80),
Lag-2 Longest Dry Spell (.50),
Lag-2 Mean T ˝C in [3,6), Lag-2
Mean T ˝C in [21,24)

Number of Selected Variables 5 11 21 46
Optimal Penalty Weight (λ) .04 .03 .027 .062
Optimal LASSO Ratio (ϕ) .8 .7 .648 .215

Notes: This table shows some results of the implementation of the Elastic-Net (EN) to select the climate variables that are best to
explain GDP per capita variations after accounting for country and year fixed effects. Each column corresponds to a different fit
criteria and refers to the outcomes of implementing the EN after setting λ and ϕ in equation (5) to optimize that specific fit criteria.
For each column, the second row shows the list of the climate variables selected by the EN. The optimal values of λ and ϕ are
presented in the last two rows, consecutively.
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Table B.8: Optimal LASSO selection of variables under different model specifications and BIC

Without Year Effects With Quadratic Trends Balanced Sample with FE

BIC
World GDP Growth, Lag-1
GDP p.c. growth, Lag-2 GDP
p.c. growth, Harsh Drought
PrevalencerW s, Max T ˝C above
35rW s

Lag-1 GDP p.c.
growth, Harsh Drought
PrevalencerW s, Max T ˝C
above 35rW s

Lag-1 GDP p.c. growth, Lag-2
GDP p.c. growth, Harsh Drought
PrevalencerW s, Max T ˝C above
35rW s, PPT MinimumrW s

Number of Selected Variables 5 3 5
Optimal Penalty Weight (λ) .039 .0285 .0372

Notes: This table shows some results of the implementation of the LASSO to select the climate variables that are best to explain
GDP per capita variations after accounting for different fixed effects different specification. Each column corresponds to a different
fixed-effect specification and refers to the outcomes of implementing the LASSO after setting λ to optimize the BIC. For each column,
the second row shows the list of the climate variables selected by the LASSO. The optimal value of λ is presented in the last row.

Table B.9: Optimal LASSO selection affecting fiscal variables under BIC fit criteria

Revenue Expenditure Debt

BIC
Lag-1 Revenue, Lag-2 Revenue,
Harsh Drought PrevalencerW s, Mean
T ˝C in [24,27)rW s, Cont’d Dry
Days, Heavy PPT Maximum, PPT
Minimum, Lag-1 Extremely Wet
Day PPTrW s, Lag-1 Longest Day
Cold WaverW s, Lag-1 Harsh Drought
PrevelancerW s, Lag-1 Extremely Wet
Day PPT, Lag-1 Cold Wave Days,
Lag 1 Longest Dry Spell (.80), Lag-1
Mean T ˝C in [24,27)

Lag-1 GDP p.c. growth, Lag-
1 Expenditure, Lag-2 Expendi-
ture, Mean T ˝C in [-3,0)rW s,
Mean Wet Day PPT, Lag-1 Harsh
Drought PrevelancerW s

Lag-1 GDP p.c. growth,
Lag-1 Debt, Lag-1 PPT
Minimum

Number of Selected Variables 14 6 3
Optimal Penalty Weight (λ) .0318 .0419 .0339

Notes: This table shows some results of the implementation of the LASSO to select the climate variables that are best to explain
different fiscal variables after accounting for country and year fixed effects. Each column corresponds to a different fiscal variable and
refers to the outcomes of implementing the LASSO after setting λ to optimize the BIC. For each column, the second row shows the
list of the climate variables selected by the LASSO. The optimal value of λ is presented in the last row.
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B.5. Additional Figures

Figure B.2: Selection of climate variables impacting GDP (specification without year effects)
(a) using the AIC (b) using the BIC (c) using the OOS within R2

Note: GDP per capita growth is the dependent variable and the specification has country effects and world growth.
See the notes of the following graph for more details.

Figure B.3: Selection of climate variables impacting GDP (specification with quadratic trends)
(a) using the AIC (b) using the BIC (c) using the OOS within R2

Note: The figures show the results of implementing the LASSO for different penalty parameters λ. The red lines
are similar in every panel and show how the number of selected variables vary with λ. The grey dashed lines in
each panel show the variation of different criteria with λ. The out-of-sample (OOS) within R-squared is calculated
on a sub-sample of countries (evaluation set) based on coefficients estimated on the rest of countries (training set)
as explained in the main text. The dots indicate the different selection outcomes given by the local optimum for
each criteria respectively. The estimated model has GDP per capita growth as the dependent variable and includes
country quadratic trends and year effects.
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Figure B.4: Selection of climate variables impacting GDP (balanced sample with FE)
(a) using the AIC (b) using the BIC (c) using the OOS within R2

Note: GDP per capita growth is the dependent variable and the specification with country and year effects was
estimated on the balanced sample for 1984-2019. See the notes of the following graph for more details.

Figure B.5: Selection of climate variables impacting government revenue
(a) Selection using the AIC (b) Selection using the BIC

Note: The figures show the results of implementing the LASSO for different penalty parameters λ. The red lines
are similar in every panel and show how the number of selected variables vary with λ. The grey dashed lines in each
panel show the variation of different criteria with λ. The within R-squared is calculated on a sub-sample of countries
(evaluation set) based on coefficients estimated on the rest of countries (training set) as explained in the main text.
The dots indicate the different selection outcomes given by the local optimum for each criteria respectively. The
estimated model has the ratio of government revenue to GDP as the dependent variable and includes country and
year effects.
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Figure B.6: Selection of climate variables impacting government expenditure
(a) Selection using the AIC (b) Selection using the BIC

Note: The estimated model has the ratio of government expenditure to GDP as the dependent variable and includes
country and year effects. See the notes of the following graph for more details.

Figure B.7: Selection of climate variables impacting government debt
(a) Selection using the AIC (b) Selection using the BIC

Note: The figures show the results of implementing the LASSO for different penalty parameters λ. The red lines
are similar in every panel and show how the number of selected variables vary with λ. The grey dashed lines in
each panel show the variation of different criteria with λ. The within R-squared is calculated on a sub-sample
of countries (evaluation set) based on coefficients estimated on the rest of countries (training set) as explained
in the main text. The dots indicate the different selection outcomes given by the local optimum for each criteria
respectively. Government debt to GDP is the dependent variable and the specification has country and year effects.
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B.6. LASSO and Elastic-Net Implementation

In this appendix, we detail our implementation of the various algorithms covered in the paper, with an

emphasis on the technical steps and the specific software and functions that we use.

We define X as the matrix containing (first differenced) right hand side variables, excluding fixed effects,

but including relevant lags of the dependent variable ∆y. For details on the lags used in each regression

model, please refer to the main article. We designate F as the matrix of fixed effects, which varies

according to the model specification. Specifically, F can encompass:

a) Country and year fixed effects, or

b) Only country fixed effects, or

c) Country fixed effects, year fixed effects, and country quadratic dummies.

The organization of these matrices is such that rows represent individual observations and columns corre-

spond to variables. To ensure compatibility with our Python-based feature selection algorithm (Python

version 3.9 or higher), we remove any missing observations.

Using this notation, the regression model incorporating all variables can be summarized as shown in

equation (B.1), which is the same as equation (2) in the main text but using different notations to

single-out and combine fixed effects under one matrix F . Note that we have omitted subscripts from

the fixed effects matrix F to indicate its flexibility; depending on the specification, F may contain only

country-related information (i) and/or year-related information (t).

∆yit “ Xitβ ` Fθ ` εit (B.1)

Before constructing the fixed effects matrix F , we first eliminate outlier observations for the dependent

variable. Specifically, any observation ∆yit that deviates by more than 5 standard deviations from the

mean ∆yit is removed as described in section 3.3 in the main text. Because the LASSO penalizes the

value of the coefficients, the scales of the parameters can affect the selection. Therefore, we standardize

each column of Xit to have 0 mean and a standard deviation of 1. After this preprocessing step, we

proceed to generate the F matrix.

The variable selection algorithm focuses on the variables within Xit. However, theoretical considerations

mandate the inclusion of fixed effects in the regression model. To reconcile these aspects, we force the

presence of fixed effects in the regression. We do so by first subtracting F pF 1F q´1F 1∆y from both sides

of the equation.
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∆yit ´ F pF 1F q´1F 1∆y “ Xitβ ` Fθ ´ F pF 1F q´1F 1 pXitβ ` Fθ ` εitq

∆y

`εit

pI ´ F pF 1F q´1F 1q∆yit
∆ỹit

“ pI ´ F pF 1F q´1F 1qXit

X̃it

β ` Fθ ´ F pF 1F q´1F 1F

I

θ

0

` pI ´ F pF 1F q´1F 1qεit
uit

ùñ ∆ỹit “ X̃itβ ` uit (B.2)

The Frisch-Waugh-Lowell theorem implies that the estimations based on equations (B.1) and (B.2) result

in the same estimate for β. Consequently, performing the selection algorithm after the above transfor-

mation effectively incorporates the fixed effects into the regression model.

As elaborated in the main text, our objective is to select a subset of columns from the matrix X̃it.

To achieve this, we employ LASSO and Elastic-Net methods, which are detailed in the subsequent

sections. The analyses are conducted using version 1.2.2 of the Scikit-Learn package in Python. To

ensure replicability due to the random sampling described later, we set the random seed using the numpy

package, version 1.25.0. All computations are performed on a Windows 11 machine with a 13th Gen

Intel(R) Core(TM) i7-13700 processor, operating at 2.10 GHz.

B.6.1 LASSO

As explained in Section 2.3 in the main text, the LASSO aims to solve equation (4), that is to minimize

the following equation:

min
β

∆ỹit ´ X̃itβ ` λ
K
ÿ

j“1

|βj | (B.3)

where the hyperparameter λ weighs the penalty term, which is the sum of the absolute values of the

coefficients βj . K denotes the number of columns in the matrix X̃it.

The penalty term encourages some coefficients to shrink towards zero. As λ increases, the penalty term

gains more weight, leading to more coefficients becoming zero. Conversely, a smaller λ results in fewer

coefficients shrinking to zero. Coefficients that remain non-zero are those for which the reduction in

standard error outweighs the penalty incurred by their inclusion in the regression.

To determine the optimal value of the hyperparameter λ, we explore four approaches:

1. Minimizing the Bayesian Information Criterion (BIC),

2. Minimizing the Akaike Information Criterion (AIC),
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3. Maximizing the average out-of-sample R2 using 5-fold cross-validation (and since we remove fixed-

effects, this R2-metric corresponds to what is commonly defined as the within R2). In this method,

observations are randomly divided into five bins without considering the panel structure of the

data,

4. Maximizing the average out-of-sample R2 with a modified 5-fold cross-validation approach that

respects the panel structure (and again, since we remove fixed-effects, this R2-metric corresponds

to what is commonly defined as the within R2). Specifically, countries are divided into five bins,

and observations for these countries are used in each fold separately.

For the first two approaches, we employ the built-in LassoLarsIC() function available in Scikit-Learn.

This function utilizes the Least Angle Regression (LARS) algorithm for LASSO variable selection, as

opposed to Scikit-Learn’s main LASSO implementation, which relies on a gradient-descent algorithm.

Both methods aim to solve the same optimization problem but take different computational routes.

For the third approach, we employ 5-fold cross-validation. In k-fold cross-validation, the dataset is ran-

domly divided into k subsets of equal (or nearly equal) size called folds. One fold is reserved as the test

set, and the model is trained on the remaining k ´ 1 folds. This process is repeated k times, each time

with a different fold serving as the test set. The performance metric, in our case the out-of-sample R2,

is then averaged across all k iterations.

We employ Scikit-Learn’s RandomizedSearchCV() function to conduct the 5-fold cross-validation. We

perform the cross-validation for 200 distinct penalty weights, leading to a total of 1,000 model fits. These

penalty weights are drawn from a half-normal distribution with a location parameter (loc) of 0.001 and

a scale parameter of 0.05.

For the fourth approach, we use NumPy’s random.choice() function to divide the countries into 5 folds:

four folds contain 41 countries each, while the fifth contains 39 countries. We then proceed in a manner

similar to the k-fold cross-validation described above. Specifically, for each of 200 distinct penalty weights,

we fit the model using observations from four folds, reserving one fold as the test set to calculate the out-

of-sample R2. Each penalty weight is evaluated five times—once for each fold serving as the test set—and

the average R2 is computed. The penalty weight yielding the highest average R2 is then selected.

B.6.2 Elastic-Net

Using the notations of this section, the Elastic-Net optimization problem covered in equation (5) in the

main text can be expressed as follows (note that ϕ would correspond to α in the Scikit-Learn package’s

notations):

min
β

1

2N
p∆ỹit ´ X̃itβq ` λϕ

K
ÿ

j“1

|βj | ` λ
1 ´ ϕ

2

K
ÿ

j“1

β2
j (B.4)
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In equation (B.4), we have two hyperparameters, λ and ϕ. The range of ϕ is between 0 and 1, and it

determines the balance between the penalty terms associated with the LASSO and the Ridge. Increasing

ϕ promotes sparsity in the solution. Likewise, increasing λ enhances sparsity, given that ϕ ‰ 0. However,

the selection of variables may differ depending on the approach taken. To determine the optimal ϕ and λ

combination, we employ the same approach as we did for the LASSO and separately consider 4 different

fit criteria.

Unlike in the LASSO case, there is no built-in function available to minimize the BIC and AIC in the case

of the Elastic-Net. As a result, we modify the source codes of the LassoLarsIC() to make it compatible

with the Elastic-Net.34 Since the faster LARS algorithm is not available for the Elastic-Net, we resort to

the gradient descent algorithm. Consequently, we do not explore every possible combination of ϕ and λ.

We consider 9 distinct values for ϕ (ranging from 0.1 to 0.9 with increments of 0.1) and 16 values for λ

(0.0025, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.15, 0.2, 0.25, 0.3). This results in

a total of 9 ˆ 16 “ 144 unique combinations. For each of these 144 combinations, we calculate the AIC

and BIC values using the formulas:

AIC “ N ˆ logp2πσ̂2
uq `

RSS

σ̂2
u

` 2 ˆ DoF (B.5)

BIC “ N ˆ logp2πσ̂2
uq `

RSS

σ̂2
u

` logpNq ˆ DoF (B.6)

We use the residual sum of squares (RSS) obtained after making predictions with the Elastic-Net, and

the degrees of freedom (DoF) are equal to the number of non-zero coefficients after the Elastic-Net. N

is the number of observations, and σ̂2
u is the estimated variance of the error term in equation (B.2). The

error term is estimated before the selection using all variables in the Xit matrix as in the source codes of

LassoLarsIC() function.

For maximizing the out-of-sample within R2 using k-fold cross-validation in the case when the obser-

vations are randomly allocated without considering the panel structure, we again utilize Scikit-Learn’s

RandomizedSearchCV() function. We sample the ϕ parameter from a uniform distribution ranging from

0.1 to 0.9, and the λ parameter from a half-normal distribution with a location parameter (loc) of 0.001

and a scale parameter of 0.5. We consider 200 distinct combinations, resulting in a total of 1,000 model

fits across 5 folds.

Lastly, maximizing the out-of-sample within R2 using k-fold cross-validation in the case when observations

are randomly allocated factoring in the country panel structure, we employ NumPy’s random.choice()

function to partition the countries into 5 folds. Four of these folds contain 41 countries each, and the fifth

contains 39 countries. To prevent corner solutions, we use a smaller scale parameter for the half-normal

distribution this time. Specifically, ϕ is sampled from a uniform distribution ranging between 0.1 and

34The source codes can be found in https://github.com/scikit-learn/scikit-learn/blob/main/sklearn

/linear_model/_least_angle.py#L2280, after lines 2089 as of November 2023.
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0.9, while λ is drawn from a half-normal distribution with a location parameter (loc) of 0.001 and a scale

parameter of 0.1 (as opposed to 0.5 used in previous exercises).

For the two implementation based on the out-of-sample within R2, we implement the EN five times for

each combination of penalty weights, once with each fold serving as the test set. For each combination,

we compute the average R2. The combination of penalty weights that maximizes this average R2 is then

determined to be the optimal combination.
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